• 제목/요약/키워드: generalized analogue of Wiener measure space

검색결과 11건 처리시간 0.025초

THE ARCSINE LAW IN THE GENERALIZED ANALOGUE OF WIENER SPACE

  • Ryu, Kun Sik
    • 충청수학회지
    • /
    • 제30권1호
    • /
    • pp.67-76
    • /
    • 2017
  • In this note, we prove the theorems in the generalized analogue of Wiener space corresponding to the second and the third arcsine laws in either concrete or analogue of Wiener space [1, 2, 7] and we show that our results are exactly same to either the concrete or the analogue of Wiener case when the initial condition gives either the Dirac measure at the origin or the probability Borel measure.

THE GENERALIZED ANALOGUE OF WIENER MEASURE SPACE AND ITS PROPERTIES

  • Ryu, Kun-Sik
    • 호남수학학술지
    • /
    • 제32권4호
    • /
    • pp.633-642
    • /
    • 2010
  • In this note, we introduce the definition of the generalized analogue of Wiener measure on the space C[a, b] of all real-valued continuous functions on the closed interval [a, b], give several examples of it and investigate some important properties of it - the Fernique theorem and the existence theorem of scale-invariant measurable subsets on C[a, b].

INTEGRATION WITH RESPECT TO ANALOGUE OF WIENER MEASURE OVER PATHS IN WIENER SPACE AND ITS APPLICATIONS

  • Ryu, Kun-Sik
    • 대한수학회보
    • /
    • 제47권1호
    • /
    • pp.131-149
    • /
    • 2010
  • In 1992, the author introduced the definition and the properties of Wiener measure over paths in Wiener space and this measure was investigated extensively by some mathematicians. In 2002, the author and Dr. Im presented an article for analogue of Wiener measure and its applications which is the generalized theory of Wiener measure theory. In this note, we will derive the analogue of Wiener measure over paths in Wiener space and establish two integration formulae, one is similar to the Wiener integration formula and another is similar to simple formula for conditional Wiener integral. Furthermore, we will give some examples for our formulae.

OPERATOR-VALUED FUNCTION SPACE INTEGRALS VIA CONDITIONAL INTEGRALS ON AN ANALOGUE WIENER SPACE II

  • Cho, Dong Hyun
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.903-924
    • /
    • 2016
  • In the present paper, using a simple formula for the conditional expectations given a generalized conditioning function over an analogue of vector-valued Wiener space, we prove that the analytic operator-valued Feynman integrals of certain classes of functions over the space can be expressed by the conditional analytic Feynman integrals of the functions. We then provide the conditional analytic Feynman integrals of several functions which are the kernels of the analytic operator-valued Feynman integrals.

THE GENERALIZED FERNIQUE'S THEOREM FOR ANALOGUE OF WIENER MEASURE SPACE

  • Ryu, Kun Sik
    • 충청수학회지
    • /
    • 제22권4호
    • /
    • pp.743-748
    • /
    • 2009
  • In 1970, Fernique proved that there is a positive real number $\alpha$ such that $\int_{\mathbb{B}}\exp\{\alpha{\parallel}x{\parallel}^{2}\}dP(x)$ is finite where ($\mathbb{B},\;P$) is an abstract Wiener measure space and ${\parallel}\;{\cdot}\;{\parallel}$ is a measurable norm on ($\mathbb{B},\;P$) in [2, 3]. In this article, we investigate the existence of the integral $\int_{c}\exp\{\alpha(sup_t{\mid}x(t){\mid})^p\}dm_{\varphi}(x)$ where ($\mathcal{C}$, $m_{\varphi}$) is the analogue of Wiener measure space and p and $\alpha$ are both positive real numbers.

  • PDF

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].

AN EVALUATION FORMULA FOR A GENERALIZED CONDITIONAL EXPECTATION WITH TRANSLATION THEOREMS OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제57권2호
    • /
    • pp.451-470
    • /
    • 2020
  • Let C[0, T] denote an analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. For a partition 0 = t0 < t1 < ⋯ < tn < tn+1 = T of [0, T], define Xn : C[0, T] → ℝn+1 by Xn(x) = (x(t0), x(t1), …, x(tn)). In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function Xn which has a drift and does not contain the present position of paths. As applications of the formula with Xn, we evaluate the Radon-Nikodym derivatives of the functions ∫0T[x(t)]mdλ(t)(m∈ℕ) and [∫0Tx(t)dλ(t)]2 on C[0, T], where λ is a complex-valued Borel measure on [0, T]. Finally we derive two translation theorems for the Radon-Nikodym derivatives of the functions on C[0, T].

CHANGE OF SCALE FORMULAS FOR A GENERALIZED CONDITIONAL WIENER INTEGRAL

  • Cho, Dong Hyun;Yoo, Il
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1531-1548
    • /
    • 2016
  • Let C[0, t] denote the space of real-valued continuous functions on [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}\mathbb{R}^n$ by $Z_n(x)=(\int_{0}^{t_1}h(s)dx(s),{\ldots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $ t_n=t$ is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. Using a simple formula for a conditional expectation on C[0, t] with $Z_n$, we evaluate a generalized analytic conditional Wiener integral of the function $G_r(x)=F(x){\Psi}(\int_{0}^{t}v_1(s)dx(s),{\ldots},\int_{0}^{t}v_r(s)dx(s))$ for F in a Banach algebra and for ${\Psi}=f+{\phi}$ which need not be bounded or continuous, where $f{\in}L_p(\mathbb{R}^r)(1{\leq}p{\leq}{\infty})$, {$v_1,{\ldots},v_r$} is an orthonormal subset of $L_2[0,t]$ and ${\phi}$ is the Fourier transform of a measure of bounded variation over $\mathbb{R}^r$. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of $G_r$ with the conditioning function $Z_n$.