• Title/Summary/Keyword: general mathematics

Search Result 1,664, Processing Time 0.026 seconds

On some properties of vague bi-groups and fuzzy bi-functions (애매 bi-군과 퍼지 bi-함수의 성질에 관한 연구)

  • Jang, Lee-Chae;Kim, Tae-Kyun;Lee, Byung-Je;Kim, Won-Joo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.356-361
    • /
    • 2010
  • M. Demirci[Vague groups, J. math. Anal. Appl. vol.230, pp. 142-156, 1999] studied the vague group operation on a crisp set as a fuzzy function and estabished the vague group structure on a crisp set. In this paper we consider bi-groups which are studied by A.A.A. Agboola and L.S. Akinola. And we also will define vague bi-groups and fuzzy bi-functions and we investigate some basic operations on the vague bi-group and fuzzy bi-functions.

COCYCLIC MORPHISM SETS DEPENDING ON A MORPHISM IN THE CATEGORY OF PAIRS

  • Kim, Jiyean;Lee, Kee Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1589-1600
    • /
    • 2019
  • In this paper, we apply the notion of cocyclic maps to the category of pairs proposed by Hilton and obtain more general concepts. We discuss the concept of cocyclic morphisms with respect to a morphism and find that it is a dual concept of cyclic morphisms with respect to a morphism and a generalization of the notion of cocyclic morphisms with respect to a map. Moreover, we investigate its basic properties including the preservation of cocyclic properties by morphisms and find conditions for which the set of all homotopy classes of cocyclic morphisms with respect to a morphism will have a group structure.

Nonlinear responses of an arbitrary FGP circular plate resting on the Winkler-Pasternak foundation

  • Arefi, Mohammad;Allam, M.N.M.
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.81-100
    • /
    • 2015
  • This paper presents nonlinear analysis of an arbitrary functionally graded circular plate integrated with two functionally graded piezoelectric layers resting on the Winkler-Pasternak foundation. Geometric nonlinearity is considered in the strain-displacement relation based on the Von-Karman assumption. All the mechanical and electrical properties except Poisson's ratio can vary continuously along the thickness of the plate based on a power function. Electric potential is assumed as a quadratic function along the thickness direction. After derivation of general nonlinear equations, as an instance, numerical results of a functionally graded material integrated with functionally graded piezoelectric material obeying two different functionalities is investigated. The effect of different parameters such as parameters of foundation, non homogenous index and boundary conditions can be investigated on the mechanical and electrical results of the system. A comprehensive comparison between linear and nonlinear responses of the system presents necessity of this study. Furthermore, the obtained results can be validated by using previous linear and nonlinear analyses after removing the effect of foundation.

EXISTENCE OF POSITIVE SOLUTIONS FOR BVPS TO INFINITE DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yuji
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.4
    • /
    • pp.639-663
    • /
    • 2011
  • Motivated by Agarwal and O'Regan ( Boundary value problems for general discrete systems on infinite intervals, Comput. Math. Appl. 33(1997)85-99), this article deals with the discrete type BVP of the infinite difference equations. The sufficient conditions to guarantee the existence of at least three positive solutions are established. An example is presented to illustrate the main results. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multi-fixed-point theorems can be extended to treat BVPs for infinite difference equations. The strong Caratheodory (S-Caratheodory) function is defined in this paper.

A Study on Effective Team Learning Support in Non-Face-To-Face Convergence Subjects (비대면 수업 융합교과의 효과적인 팀학습 지원에 관한 연구)

  • Jeon, Ju Hyun
    • Journal of Engineering Education Research
    • /
    • v.24 no.6
    • /
    • pp.79-85
    • /
    • 2021
  • In a future society where cutting-edge science technology such as artificial intelligence becomes commonplace, the demand for talented people with basic knowledge of mathematics and science is expected to increase continuously, and the educational infrastructure suitable for the characteristics of future generations is still insufficient. In particular, in the case of students taking convergence courses including practical training, there was a problem in communication with the instructor. In this study, we looked at the current status of distance learning at domestic universities that came suddenly due to the global pandemic of COVID-19. In addition, a case study of the use of technology was conducted to facilitate the interaction between instructors and learners through case analysis of distance classes in convergence subjects. Therefore, this study aims to introduce the case of developing lecture contents for smooth convergence education in a non-face-to-face educational environment targeting the developed AI convergence courses and applying them to the education of enrolled students.

How to identify fake images? : Multiscale methods vs. Sherlock Holmes

  • Park, Minsu;Park, Minjeong;Kim, Donghoh;Lee, Hajeong;Oh, Hee-Seok
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.583-594
    • /
    • 2021
  • In this paper, we propose wavelet-based procedures to identify the difference between images, including portraits and handwriting. The proposed methods are based on a novel combination of multiscale methods with a regularization technique. The multiscale method extracts the local characteristics of an image, and the distinct features are obtained through the regularized regression of the local characteristics. The regularized regression approach copes with the high-dimensional problem to build the relation between the local characteristics. Lytle and Yang (2006) introduced the detection method of forged handwriting via wavelets and summary statistics. We expand the scope of their method to the general image and significantly improve the results. We demonstrate the promising empirical evidence of the proposed method through various experiments.

ON WIELANDT-MIRSKY'S CONJECTURE FOR MATRIX POLYNOMIALS

  • Le, Cong-Trinh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1273-1283
    • /
    • 2019
  • In matrix analysis, the Wielandt-Mirsky conjecture states that $$dist({\sigma}(A),{\sigma}(B)){\leq}{\parallel}A-B{\parallel}$$ for any normal matrices $A,B{\in}{\mathbb{C}}^{n{\times}n}$ and any operator norm ${\parallel}{\cdot}{\parallel}$ on $C^{n{\times}n}$. Here dist(${\sigma}(A),{\sigma}(B)$) denotes the optimal matching distance between the spectra of the matrices A and B. It was proved by A. J. Holbrook (1992) that this conjecture is false in general. However it is true for the Frobenius distance and the Frobenius norm (the Hoffman-Wielandt inequality). The main aim of this paper is to study the Hoffman-Wielandt inequality and some weaker versions of the Wielandt-Mirsky conjecture for matrix polynomials.

SPECTRAL ANALYSIS FOR THE CLASS OF INTEGRAL OPERATORS ARISING FROM WELL-POSED BOUNDARY VALUE PROBLEMS OF FINITE BEAM DEFLECTION ON ELASTIC FOUNDATION: CHARACTERISTIC EQUATION

  • Choi, Sung Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.1
    • /
    • pp.71-111
    • /
    • 2021
  • We consider the boundary value problem for the deflection of a finite beam on an elastic foundation subject to vertical loading. We construct a one-to-one correspondence �� from the set of equivalent well-posed two-point boundary conditions to gl(4, ℂ). Using ��, we derive eigenconditions for the integral operator ��M for each well-posed two-point boundary condition represented by M ∈ gl(4, 8, ℂ). Special features of our eigenconditions include; (1) they isolate the effect of the boundary condition M on Spec ��M, (2) they connect Spec ��M to Spec ����,α,k whose structure has been well understood. Using our eigenconditions, we show that, for each nonzero real λ ∉ Spec ����,α,k, there exists a real well-posed boundary condition M such that λ ∈ Spec ��M. This in particular shows that the integral operators ��M, arising from well-posed boundary conditions, may not be positive nor contractive in general, as opposed to ����,α,k.

HYPERSTABILITY CRITERION FOR A NEW TYPE OF 2-VARIABLE RADICAL FUNCTIONAL EQUATIONS

  • EL-Fassi, Iz-iddine
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.343-359
    • /
    • 2021
  • The aim of this paper is to obtain the general solution of the 2-variable radical functional equations $f({\sqrt[k]{x^k+z^k}},\;{\sqrt[{\ell}]{y^{\ell}+w^{\ell}}})=f(x,y)+f(z,w)$, x, y, z, w ∈ ℝ, for f a mapping from the set of all real numbers ℝ into a vector space, where k and ℓ are fixed positive integers. Also using the fixed point result of Brzdęk and Ciepliński [11, Theorem 1] in (2, 𝛽)-Banach spaces, we prove the generalized hyperstability results of the 2-variable radical functional equations. In the end of this paper we derive some consequences from our main results.

ON STABILITY OF A GENERALIZED QUADRATIC FUNCTIONAL EQUATION WITH n-VARIABLES AND m-COMBINATIONS IN QUASI-𝛽-NORMED SPACES

  • Koh, Heejeong;Lee, Yonghoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.319-326
    • /
    • 2020
  • In this paper, we establish a general solution of the following functional equation $$mf\({\sum\limits_{k=1}^{n}}x_k\)+{\sum\limits_{t=1}^{m}}f\({\sum\limits_{k=1}^{n-i_t}}x_k-{\sum\limits_{k=n-i_t+1}^{n}}x_k\)=2{\sum\limits_{t=1}^{m}}\(f\({\sum\limits_{k=1}^{n-i_t}}x_k\)+f\({\sum\limits_{k=n-i_t+1}^{n}}x_k\)\)$$ where m, n, t, it ∈ ℕ such that 1 ≤ t ≤ m < n. Also, we study Hyers-Ulam-Rassias stability for the generalized quadratic functional equation with n-variables and m-combinations form in quasi-𝛽-normed spaces and then we investigate its application.