Acknowledgement
Supported by : Natural Science Foundation of Guangdong Province
References
- C. Yang, P. Weng, Green functions and positive solutions for boundary value problems of third-order difference equations, Comput. Math. Appl. 54 (2007), 567-578. https://doi.org/10.1016/j.camwa.2007.01.032
- I. Y. Karaca, Discrete third-order three-point boundary value problem, J. Comput. Appl. Math. 205 (2007), 458-468. https://doi.org/10.1016/j.cam.2006.05.030
- H. Pang, H. Feng, W. Ge, Multiple positive solutions of quasi-linear boundary value problems for finite difference equations, Appl. Math. Comput. 197 (2008), 451-456. https://doi.org/10.1016/j.amc.2007.06.027
- W. Cheung, J. Ren, P. J. Y. Wong, D. Zhao, Multiple positive solutions for discrete nonlocal boundary value problems, J. Math. Anal. Appl. 330 (2007), 900-915. https://doi.org/10.1016/j.jmaa.2006.08.034
- Y. Li, L. Lu, Existence of positive solutions of p-Laplacian difference equations, Appl. Math. Letters 19 (2006), 1019-1023. https://doi.org/10.1016/j.aml.2005.10.020
- X. Cai, J. Yu, Existence theorems for second-order discrete boundary value problems, J. Math. Anal. Appl. 320 (2006), 649-661. https://doi.org/10.1016/j.jmaa.2005.07.029
- G. Zhang, R. Medina, Three-point boundary value problems for difference equa- tions, Comput. Math. Appl. 48 (2004), 1791-1799. https://doi.org/10.1016/j.camwa.2004.09.002
- N. Aykut, Existence of positive solutions for boundary value problems of secondorder functional difference equations, Comput. Math. Appl. 48 (2004), 517-527. https://doi.org/10.1016/j.camwa.2003.10.007
- Z. He, On the existence of positive solutions of p-Laplacian difference equations, J. Comput. Appl. Math. 161 (2003), 193-201. https://doi.org/10.1016/j.cam.2003.08.004
- D. R. Anderson, Discrete third-order three-point right-focal boundary value problems, Comput. Math. Appl. 45 (2003), 861-871. https://doi.org/10.1016/S0898-1221(03)80157-8
- J. R. Graef and J. Henderson, Double solutions of boundary value problems for 2mth-order differential equations and difference equations, Comput. Math. Appl. 45 (2003), 873-885. https://doi.org/10.1016/S0898-1221(03)00063-4
- P. J. Y. Wong, L. Xie, Three symmetric solutions of lidstone boundary value problems for difference and partial difference equations, Comput. Math. Appl. 45 (2003), 1445-1460. https://doi.org/10.1016/S0898-1221(03)00102-0
- Y. Liu, W. Ge, Twin positive solutions of boundary value problems for finite difference equations with p-Laplacian operator, J. Math. Anal. Appl. 278 (2003), 551-561. https://doi.org/10.1016/S0022-247X(03)00018-0
- P. J. Y. Wong, R.P. Agarwal, Existence theorems for a system of difference equations with (n,p)-type conditions, Appl. Math. Comput. 123 (2001), 389- 407. https://doi.org/10.1016/S0096-3003(00)00078-3
- R. I. Avery, A generalization of Leggett-Williams fixed point theorem, Math. Sci. Res. Hot Line, 3 (1993), 9-14.
- D. Anderson, R.I. Avery, Multiple positive solutions to a third-order discrete focal boundary value problem, Comput. Math. Appl. 42 (2001), 333-340. https://doi.org/10.1016/S0898-1221(01)00158-4
- R. Leggett, L. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673-688. https://doi.org/10.1512/iumj.1979.28.28046
- Z. Bai, W. Ge, Existence of three positive solutions for some second-order boundary value problems, Acta Mathematica Sinica(Chinese Series), 49 (2006), 1045-1052.
- J. Yu, Z. Guo, On generalized discrete boundary value problems of Emden- Fowler equation, Science in China (Ser. A Mathematics), 36 (7)(2006), 721- 732.
- P. J. Y.Wong and L. Xie, Three symmetric solutions of lidstone boundary value problems for difference and partial difference equations, Comput. Math. Appl. 45 (2003), 1445-1460. https://doi.org/10.1016/S0898-1221(03)00102-0
- Y. Liu, Positive Solutions of Multi-point BVPs for second order p-Laplacian Difference Equations, Communications in Mathematical Analysis 4 (2008), 58- 77.
- R. P. Agarwal, D. O'Regan, Boundary value problems for general discrete systems on infinite intervals, Comput. Math. Appl. 33 (1997), 85-99. https://doi.org/10.1016/S0898-1221(97)00044-8