• 제목/요약/키워드: general artificial intelligence

검색결과 279건 처리시간 0.021초

A FRAMEWORK FOR ACTIVITY-BASED CONSTRUCTION MANAGEMENT SIMILATION

  • Boong Yeol Ryoo
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.732-737
    • /
    • 2009
  • Due to various project delivery methods and the complexity of construction projects in the construction industry, developing the framework of construction management for critical, highly complex projects in the construction industry has become problematic. Currently, a set of construction manuals play a pivotal role in planning and managing construction projects as subcontractors try to complete their scope of work according to the instructions of a general contractor. It is challenging for general contractors to write a construction management procedure manual to cover various types of project delivery methods and construction projects. In construction, the construction procedure manuals describe specific actions to be taken through the project. In reality a few contactors own such manuals and their construction schedules include more construction operation activities. Thus, it is hard to estimate the workload and productivity of construction managers because the manual and the schedule do not present the amount of management efforts required to complete a project. This paper proposes a framework to present construction management tasks according to project delivery methods which can be applied to various construction projects. Actions for management tasks were mapped and were integrated with construction activities throughout the project life cycle. The framework can then be used to give specific instructions to project participants, collect management actions, and replicate management actions throughout the project life cycle. The framework can also be can used to visualize complete construction project to analyze and manage construction management activities in each phase of a project in order to enhance productivity and efficiency. The studies of existing construction manuals were carried out to identify construction managers' responsibilities. An artificial intelligence program, CLIPS (C-Language Integrated Production System) was used to search for appropriate actions for impending tasks from a set of predefined actions to be performed for a given situation. The framework would significantly help construction managers to understand interrelations among management tasks or actions within a project. Furthermore, the framework can be embedded into Building Information Modeling (BIM) or Facility Management Systems (FMS) so that designers and constructors would execute constructability review before construction begins.

  • PDF

유한요소해석과 순환신경망을 활용한 하중 예측 (Load Prediction using Finite Element Analysis and Recurrent Neural Network)

  • 강정호
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.151-160
    • /
    • 2024
  • Artificial Neural Networks that enabled Artificial Intelligence are being used in many fields. However, the application to mechanical structures has several problems and research is incomplete. One of the problems is that it is difficult to secure a large amount of data necessary for learning Artificial Neural Networks. In particular, it is important to detect and recognize external forces and forces for safety working and accident prevention of mechanical structures. This study examined the possibility by applying the Current Neural Network of Artificial Neural Networks to detect and recognize the load on the machine. Tens of thousands of data are required for general learning of Recurrent Neural Networks, and to secure large amounts of data, this paper derives load data from ANSYS structural analysis results and applies a stacked auto-encoder technique to secure the amount of data that can be learned. The usefulness of Stacked Auto-Encoder data was examined by comparing Stacked Auto-Encoder data and ANSYS data. In addition, in order to improve the accuracy of detection and recognition of load data with a Recurrent Neural Network, the optimal conditions are proposed by investigating the effects of related functions.

영어 문법 실력 향상을 위한 인공지능 챗봇 활용에 관한 연구 (A Study on the Use of Artificial Intelligence Chatbots for Improving English Grammar Skills)

  • 김나영
    • 디지털융복합연구
    • /
    • 제17권8호
    • /
    • pp.37-46
    • /
    • 2019
  • 본 연구는 인공지능 챗봇을 활용한 채팅 활동이 국내 대학생의 영어 문법 능력 향상에 미치는 영향을 조사한 것으로, 챗봇과의 채팅을 통해 실험 참가자의 영어 문법 능력이 실제로 상승하는지에 대한 여부를 알아보는 데 그 목적이 있다. 총 16주 동안 70명의 참가자가 챗봇 그룹과 인간 그룹으로 나뉘어 본 연구에 참여하였고, 참여인원은 각각 36명, 34명이었다. 챗봇 그룹은 수업시간에 배운 내용을 주제로 챗봇과의 채팅에 참여하였고, 인간 그룹은 같은 반 학생들끼리 짝지어 채팅을 진행하였다. 채팅 활동의 효과를 파악하기 위하여 본 연구 시작 전과 종료 후, 사전 사후 영어 문법 시험을 실시하였고, 그룹 간 비교를 위하여 독립표본 t검증을 실시하였다. 주요 결과 및 시사점은 다음과 같다. 사전 사후 평가 분석 결과, 두 그룹 모두에서 영어 문법 능력이 유의미하게 상승한 것으로 나타나 채팅 활동의 효과를 증명하였다. 문법 능력 상승에 대한 그룹 간 차이 역시 통계적으로 유의미한 것으로 밝혀져 국내 영어 교육에 있어서 챗봇의 긍정적인 역할을 확인하였다. 본 연구는 영어 문법 능력 향상을 위한 인공지능 챗봇 활용에 대한 시사점을 제시하는데 그 의의를 갖는다.

인공지능 스토리텔링(AI+ST) 학습 효과에 관한 사례연구 (A Case Study on the Effect of the Artificial Intelligence Storytelling(AI+ST) Learning Method)

  • 여현덕;강혜경
    • 정보교육학회논문지
    • /
    • 제24권5호
    • /
    • pp.495-509
    • /
    • 2020
  • 본 연구는 인공지능(이하 AI)이 모든 영역에 전일적으로 확산되는 시점을 맞아 비전공자들도 AI를 효과적으로 학습하는 방안을 탐색하기 위한 하나의 시론적 연구이다. AI 교육을 수학, 통계, 컴퓨터공학 전공 학생들뿐만 아니라 인문·사회과학 등 다른 전공자들도 쉽게 접근할 수 있도록 하기 위한 학습법을 탐색하고자 하였다. 마침 '설명 가능한 AI(XAI: eXplainable AI)'의 필요성과 MIT AI 연구소의 Patrick Winston의 '지각 있는 기계(AI)를 위한 스토리텔링의 중요성[33]'이 두드러진 상황에서 AI 스토리텔링 학습모델 연구의 의의를 찾을 수 있겠다. 이를 위해 본 연구는 우선 대구 소재 A 대학교의 학생들을 대상으로 그 가능성을 테스트하였다. 먼저 AI 스토리텔링(AI+ST) 학습법[30]의 교육목표, AI 교육내용의 체계와 학습방법론, 새로운 AI 도구의 소개 및 활용에 대해 살펴보고, 1) AI+ST 학습법이 알고리즘 중심의 학습법을 보완할 수 있는지, 2) AI+ST 학습법이 학생들에게도 효과가 있는지, 그리하여 AI 이해력, 흥미도, 응용력 배양에 도움이 되었는지에 관한 연구 질문을 중심으로 학습자들의 결과물을 비교 분석하였다.

2차 하수를 이용한 비 선형 패턴인식 알고리즘 구축 (Construction of A Nonlinear Classification Algorithm Using Quadratic Functions)

  • 김락상
    • 한국경영과학회지
    • /
    • 제25권4호
    • /
    • pp.55-65
    • /
    • 2000
  • This paper presents a linear programming based algorithm for pattern classification. Pattern classification is being considered to be critical in the area of artificial intelligence and business applications. Previous methods employing linear programming have been aimed at two-group discrimination with one or more linear discriminant functions. Therefore, there are some limitations in applying available linear programming formulations directly to general multi-class classification problems. The algorithm proposed in this manuscript is based on quadratic or polynomial discriminant functions, which allow more flexibility in covering the class regions in the N-dimensional space. The proposed algorithm is compared with other competitive methods of pattern classification in experimental results and is shown to be competitive enough for a general purpose classifier.

  • PDF

공학도를 위한 '비판적 사고와 토론' 수업 모델 연구 - 영화 <엑스 마키나>를 활용하여 (A Research on the Education Model of a 'Critical Thinking and Debate' Course for Engineering Students - Using the Film Ex Machina)

  • 황영미
    • 공학교육연구
    • /
    • 제23권3호
    • /
    • pp.41-48
    • /
    • 2020
  • In light of the 4th industrial revolution, this research identifies critical thinking education as the key component of cultivating a new pool of integrative talents. It seeks to find ways to incorporate artificial intelligence, one of the biggest upcoming innovations, into critical thinking education. This paper aims to propose an education model that raises awareness on related issues of AI and set a healthy direction for its development through debates on topics raised by the film, Ex Machina, which depicts the dangerous implications of AI technology.

Performance Improvement of Web Service Based on GPGPU and Task Queue

  • Kim, Changsu;Kim, Kyunghwan;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • 제19권4호
    • /
    • pp.257-262
    • /
    • 2021
  • Providing web services to users has become expensive in recent times. For better web services, a web server is provided with high-performance technology. To achieve great web service experiences, tools such as general-purpose graphics processing units (GPGPUs), artificial intelligence, high-performance computing, and three-dimensional simulation are widely used. However, graphics processing units (GPUs) are used in high-speed operations and have limited general applications. In this study, we developed a task queue in a GPU to improve the performance of a web service using a multiprocessor and studied how to receive and process user requests in bulk. We propose the use of a GPGPU-based task queue to process user requests more than GPGPU based a central processing unit thread, and to process more GPU threads on task queue at about 136% to 233%, and proved that the proposed method is effective for web service.

Implementation of a Sightseeing Multi-function Controller Using Neural Networks

  • Jae-Kyung, Lee;Jae-Hong, Yim
    • Journal of information and communication convergence engineering
    • /
    • 제21권1호
    • /
    • pp.45-53
    • /
    • 2023
  • This study constructs various scenarios required for landscape lighting; furthermore, a large-capacity general-purpose multifunctional controller is designed and implemented to validate the operation of the various scenarios. The multi-functional controller is a large-capacity general-purpose controller composed of a drive and control unit that controls the scenarios and colors of LED modules and an LED display unit. In addition, we conduct a computer simulation by designing a control system to represent the most appropriate color according to the input values of the temperature, illuminance, and humidity, using the neuro-control system. Consequently, when examining the result and output color according to neuro-control, unlike existing crisp logic, neuro-control does not require the storage of many data inputs because of the characteristics of artificial intelligence; the desired value can be controlled by learning with learning data.

인공신경망을 이용한 대대전투간 작전지속능력 예측 (A study on Forecasting The Operational Continuous Ability in Battalion Defensive Operations using Artificial Neural Network)

  • 심홍기;김승권
    • 지능정보연구
    • /
    • 제14권3호
    • /
    • pp.25-39
    • /
    • 2008
  • 본 연구는 인공신경망을 이용하여 대대급 방어 작전에서 임의시점에서의 작전지속능력을 예측하는 데 있다. 전투결과에 대한 수학적 모델링은 이를 위한 많은 요인들이 가지는 시?공간적 가변성으로 인해 전투력을 평가하는데 많은 문제점이 있었다. 따라서 이번 연구에서는 대대 전투지휘훈련간 각 부대의 생존률을 전방향 다층 신경망(Feed-Forward Multilayer Perceptrons, MLP)과 일반 회귀신경망(General Regression Neural Network, GRNN)모형에 적용하여 임무달성 여부를 예측하였다. 실험 결과 매개변수들의 비선형적인 관계에도 불구하고 각각 82.62%, 85.48%의 적중률을 보여 일반회귀신경망 모형이 지휘관이 상황을 인식하고 예비대 투입 우선순위 선정 등 실시간 지휘결심을 하는데 도움을 줄 수 있는 방법임을 보여준다.

  • PDF

A Research on Aesthetic Aspects of Checkpoint Models in [Stable Diffusion]

  • Ke Ma;Jeanhun Chung
    • International journal of advanced smart convergence
    • /
    • 제13권2호
    • /
    • pp.130-135
    • /
    • 2024
  • The Stable diffsuion AI tool is popular among designers because of its flexible and powerful image generation capabilities. However, due to the diversity of its AI models, it needs to spend a lot of time testing different AI models in the face of different design plans, so choosing a suitable general AI model has become a big problem at present. In this paper, by comparing the AI images generated by two different Stable diffsuion models, the advantages and disadvantages of each model are analyzed from the aspects of the matching degree of the AI image and the prompt, the color composition and light composition of the image, and the general AI model that the generated AI image has an aesthetic sense is analyzed, and the designer does not need to take cumbersome steps. A satisfactory AI image can be obtained. The results show that Playground V2.5 model can be used as a general AI model, which has both aesthetic and design sense in various style design requirements. As a result, content designers can focus more on creative content development, and expect more groundbreaking technologies to merge generative AI with content design.