RELENPES
F525% B4R
2000% 12R

55

Construction of A Nonlinear Classification Algorithm Using
Quadratic Functions

Lark Sang Kim*

8 Abstract B

This paper presents a linear programming based algorithm for pattern classifications. Pattern classification is
being considered to be critical in the area of artificial intelligence and business applications. Previous methods
employing linear programming have been aimed at two-group discrimination with one or more linear discriminant
functions. Therefore, there are some limitations in applying available linear programming formulations directly to
general multi-class classification problems. The algorithm proposed in this manuscript is based on quadratic or
polynomial discriminant functions, which allows more flexibility in covering the class regions in the N-dimensional
space. The proposed algorithm is compared with other competitive methods of pattern classification in exper-
imental resuits and is shown to be competitive enough for a general purpose classifier.

1. Introduction

This paper presents a new algorithm based on
linear programming for pattern classification. The
linear programming methods were introduced as
a nonparametric alternative to Fisher's linear dis-

crimination method. Several linear programming

models using linear discriminant function have
been tried by Freed and Glover(1986), Koehler &
Erenguc(1990), and Rubin(1991). However, these
methods have some limitations in applying direct
Iy to general multi—class classification problems.
The following notation is used in this paper.

An input pattern is represented by the N-di-

c Rt JYgrety sug

50 CER]

, Xn). The

pattern space, which is the set of all possibles

mensional vector X, X = (xj, Xz, **

that x may assume, is represented by 2x . K
denotes the total number of classes. The method
is for supervised learning where the training set
Xi, X2, '+, Xn 1S a set of sample patterns with
known classification.

The paper is organized as follows. Section 2
briefly discusses the basic linear programming
formulation ideas. In Section 3, the new outlier
detection procedure is presented. The two-phase
algorithm is summarized in Section 4. Section 5
has experimental results on several well-known

applications.

2. Basic ideas of linear pro-
gramming method for cov-
ering class regions

Linear programming models have been used in
many classification algorithms. Significant con-
tributions include those by Glover, Keene, and
Duea(198R), Freed and Glover(1986), and Rubin
(1991). Most of them derive hyperplanes to sep-
arate classes.

One of the fundamental ideas in pattern clas-
sification is to draw proper boundaries to separate
the class regions. This method uses the idea of
masking or covering a class region. Any complex
nonconvex region can be covered by a set of
elementary convex forms of varying size, such
as hyperspheres and hyperellipsoids in the N-
dimensional space (see [Figure 1]). The idea of
using elementary convex covers is not new in
pattern classification.

As with hypersphere and other classifiers, there

may exist overlap among the elementary convex

covers In order to provide complete and adequate

coverage of a class region.

X2

i

»
»

X1

[Figure 1] Covering a nonconvex class region
such as A by elementary masks

2.1 Classification of input Patterns Using
Masks(Discriminant Functions)

Let p elementary covers or masks (henceforth
generally referred to as masks) be required to
cover a certain class P region. To classify an input
pattern as being in class P, it is necessary to
determine if it falls within the area covered by
one of the p masks. if the pattern space is
two—dimensional and one of the p masks is a circle
centered at (a, b) with a radius r, a simple
discriminant (masking) function can be created
to determine if an input pattern falls in the
territory of the designated mask. Let f(x), x2) =
£ - [(x;-a)® + (x2-b)*] be the masking function
for this circular mask. If (x), x2) is an input pattern,
and

if f(x1, x2) >= 0, then (x1, X2) is inside this mask
and (x;, x2) belongs to class P;
if f(xy, x2) < 0, then (x), X2) is not inside this mask

and other masks will have

27 g old

o
=
i

gl dxdE & 57

to be tested before a conclusion can be reached
as to the classification of (x), x2). A similar mask-
ing function for an elliptical mask will be f(x;,
x2) = 1 - [-a)/c” + (xe=b)/d’] in the usual
notation.

In constructing a masking function f(x), the
procedure requires f(x) to be at least slightly
positive(f(x) >= &) for input patterns covered
by the mask and at least slightly negative (f(x)
<= - &) for those not covered. So, in general, let
D« be the number of masking functions required
to cover class k, k=1 - K. Let f5x), -, fpkk<x)
denote these masking functions for class k. Then
an input pattern X will belong to class j if and
only if one or more of its masks is at least slightly
positive, i.e., equal to or above a small positive
threshold value &, and the masks for all other
classes are at least slightly negative, i.e., below
a threshold value - ¢. Each mask will have its
own threshold value as determined during its
construction. Expressed in mathematical notation,

an inpul pattern x is in class j, if and only if

fi(x) >= &’ for at least one mask
I, 1=1 - p;, and
f5(x) < -¢" for all k=j and i=1 - p. (1)

If all masks are at least slightly negative (i.
e., below their individual - € thresholds), the input
pattern can not be classified, unless one uses a
nearest mask notion. If masks from two or more
classes are at least slightly positive, then also the
input pattern can not be classified, unless once
again one uses a “interior most” in a mask or
similar notion. In the second situation, an indi-
cation can be obtained, however, about the pos—
sible contenders. Such cases would possibly arise
when the set of input patterns or the nature of

the class regions does not prevent the formation

of overlapped masks belonging to different classes.

2.2 Construction of Masking Functions

A variety of elementary convex masks can be

used to cover a class region. A quadratic function

=z

i

binin + C,

N
f(x) = _Z;aixl + Z}
1= = 7=

where x=(xj, X3, =+ , Xn))
can generate hyperellipsoids, hyperspheres, etc.,
as masks in the N-dimensional case. It can also
generate nonconvex shapes (masks) which is
acceptable as long as they help to cover a class
region properly. A quadratic function is used here
as the standard masking function. If N, the
dimension of the pattern vector x, is large, the
cross-product terms are usually dropped or only
a few used. The algorithm basically determines
the coefficients a;, by, ¢ (=1 - N, j=1 =+ N) of
these masks. In constructing masks, it is ensured
that the generated mask covers only sample
patterns of its designated class and not of others.
Next is explained the construction of these masks
that is, how to determine the number of masks
required and how to solve for the parameters
(coefficients) of a masking function.

Consider a simple two class problem shown in
[Figure 2] in which class A is bounded by a circle
centered at the origin and class B is the rest of
the two-dimensional space. A total of 8 sample
patterns have been taken as the training set -
4 patterns from class A and 4 patterns from class
B - as shown in the figure.

A priori, it is not known how many elementary
masks will suffice for any of the class regions.
Thus, an attempt is first made to define a single
elementary mask which will cover the whole class

region. If this fails, the sample patterns in that

58 ZANR

A
X2 falx) = ~0.071x/° -0.071xs + 0.061
1 X5
0 X7 X5
B
1 X
1 0 x>

[Figure 2] Two classes, A and B,
of input patterns

class are generally split into two or more clusters
(using a clustering procedure that can produce
a prespecified number of clusters) and then
attempts are made to define separate masks for
each of these clusters. If that should fail, or if
only some are masked, then the unmasked
clusters are further split for separate masking
until masks are provided for each ultimate cluster.
The general idea is to define as large a mask as
possible to include as many of the sample patterns
within a class in a given mask as is feasibly
possible, thereby minimizing the total number of
masks required to cover a given region. When
it is not feasible to cover with a certain number
of masks, the region is subdivided into smaller
pieces and masking is attempted for each piece.
That is, the unmasked sample patterns are
successively subdivided into smaller clusters for
masking. At any stage of this iterative procedure,

there will be a number of clusters to be masked.

It might be feasible to mask some of them, thereby
necessitating the breakup only of the remaining
unmasked clusters. This “divide and conquer”
procedure is a heuristic procedure. One can
explore many vanations of it, some of which are
discussed later.

Going back to the example, one first tries to
mask class A with a single masking function. Let
a mask of the form

fa00) = aixy + a@xe + bixi” +

7
bruXi*x2 + bxxs + ¢ (3)

be tried such that for input patterns in class A,
fa(x) is at least slightly positive. As noted hefore,
the masks are constructed so that they are slightly
positive for the boundary points in the mask. This
ensures a finite separation between the classes
and prevents the formation of common bound-
aries. To determine the parameters, ai, as, by, b,
b, and ¢ of the masking function in eqn (3), a
linear program is set up which essentially states
the following : “construct a masking function
such that sample patterns from class A are
slightly positive and those from class B are at
least slightly negative.” A linear programming
model can be used because polynomials are linear
functions of their parameters. The LP set up in

this case is as follows :

Minimize ¢

s, T
falxy) >= ¢
falxy) >= ¢
falxs) >= ¢
falxy) >= ¢
falxs) <= -¢
f\(Xh) - &
falxy) <= -¢

gl dyeEF +5% 59

fA(Xx) <= -

e >= a small positive constant. (4)

Generally, a lower bound of 0.01 is used for €.
In terms of the masking function parameters, the

LP will be as follows :

Minimize ¢
s. t
0.4a, + 04a» + 0.16by; + 0.16biz + 0.16bx + ¢ >= ¢
for pattern x;
~04a; + 04ay + 0.16by - 0.16bp + 0.16bx + ¢ >= ¢
for pattern x.
04a; - 0.day + 0.16by; - 0.16by + 0.d6hy + ¢ >= ¢
for pattern x3
-04a; - 04z + 0.16by + 0.16bp + 016b» + ¢ >= ¢
for pattern xy
atby+ve<=-¢ for pattern x;
a +t by e <=-¢ for pattern xs
At hiy e <5 ¢ for pattern x;
bt <= for pattern xx
¢ >=001 B)

The solution to this LP is a1=0, az=0, by =
-0.071429, bi=0, bxn=-0.071429, c=0.061429,
and &€ =0.01. The single masking function for
class A, therefore, is fa(x) = ~0.071x1 ~0.071xu
+ 0.061. The plot of this masking function is
shown in {Figure 3]. For any pattern in class A,
fa(x) >= ¢, and for any pattern in class B, fa(x)
<= - ¢. Therefore the masking function for class
B, fe(x) = —fa(x).

The proposed method uses the idea of
“masking” or “covering” a class region, which is
different from most other LP methods in pattern
classification. Any complex nonconvex or disjoint
region can be covered by a set of elementary
convex forms of varying size such as hyper-
spheres and hyperellipsoids in the N-dimensional

space.

Consider the classification problem shown in
[Figure 3], where the class A territory consists
of two disjoint regions(A;, A») and class B
comprises the rest of space. According to the
masking procedure, the first effort should be to
define a single mask for each of the two classes.
To define a single mask for class A, an LP is

set up as follows :

Minimize ¢
s L
falx)) >= e for all sample patterns x;
belonging class A,
falx;) <= - ¢ for all sample patterns x;
belonging to class B

€ >= a small posilive constant.

where fa(X) is a quadratic. This LP has no
feasible solution when B sample patterns occur
between the A regions. This indicates that a sin-
gle mask cannot be constructed for class A. So,
in the next step, the class A sample patterns are
divided, suppose, into two clusters (A and A»)
for further masking attempts. Now, an attempt
is made to mask A and A clusters separately.
The LPE for the A; cluster is :

Minimize ¢
s, t.
failxi) >= ¢ for all sample patterns x;
belonging to cluster A,
fai(x;) <= - for all sample patterns x;
belonging to class B

€ >= a small positive constant.
Similarly, the LP for cluster Ay is :

Minimize ¢
s, L.
fax(xi) >= & for all sample patterns x;

belonging to cluster Az

60 A e A

far(xi) <= -¢ for all sample patterns x;
belonging to class B

& >= a small positive constant.

Two LP solutions generated by the above two
LPs will form a decision region by the “OR”
condition. That is, an input pattern will he
classified into class A if it is in either of two or
in both masking functions of class A. The process
of splitting subsets (or clustering) continues until
all LP solutions of subsets (or clusters) are fea-
sible. Thus, any arbitrary nonconvex or disjoint
class region can be covered by several masking
functions. If the class regions are overlapped two
much, then the above procedure does not work.
Thus, a heuristic to delete outlier patterns for

applying the above procedure is needed.

Class A
Al

Other class region
(Class B)

[Figure 3] A classification problem with disjoint
class regions

3. Identifying and Deleting
Outliers in Classification
Problems

General classification problems have in nature
pattern vectors that fall outside their core class

regions. Let these pattern vectors be called “out-

liers”. A basic concept underlying many classi-
fication systems is to extract the core regions of
a class from the information provided and ignore
its outliers. The procedure is to divide the pattern
space spanned by the training patterns into small
neighborhoods and assigns each neighborhood or
cluster to the class with the majority of its mem-—
bers. The remaining minority sample patterns in
these neighborhoods (clusters) are treated as out-
liers and discarded.

This territory assignment idea is implemented
in a three-step procedure in this method. In the
first step, territories are allocated on the basis of
significant majority (e.g., more than two-thirds
majority in the cluster). More mixed clusters are
dealt with in the next two steps by defining
smaller clusters and using a simpler majority rule
(e.g., more than half). One can view this procedure
as doing the easy, noncontroversial allocations
first and taking on harder cases later. The last
two steps examine gradually smaller neigh-
borhoods (clusters) for assignment decisions. The
procedure also performs a two-point sensitivity
analysis in the first step. The sensitivity analysis
verifies the consistency of the assignments under
two-different neighborhood sizes (i.e., two differ-
ent average cluster sizes). All inconsistent as-
signments are carried forward to the next step.
For example, when a sample pattern is found to
be an outlier under one average cluster size but
not the other, it is carried forward as “unassigned”
to the next step for a closer examination. The
procedure is outlined in more detail next.

Let my, me, ms (where m; > my >= m3) be the
average cluster sizes used in the three steps. For
instance, one can set m; =7, me =5, m3=3. The
number of sample patterns remaining unassigned
in any step (ni) is divided by the corresponding

22t §-E o4 % ¥ AY ALY FnAF T 61
B e = = =~

average cluster size (m;) to determine the number
of clusters to form (P) in that step using a
k-means clustering algorithm. So P; = ni / mi and
ni = n, n being the total number of training sam-
ples. In the first step, the training set is broken
upinto (1+¢)P: and (1-¢)P clusters for sensitivity
analysis, where c is a factor usually between 0.2
and 0.3. In this step, sample patterns in a cluster
are labeled as “outlier” if their class has less than
one-third of the members and they are labeled
as “core patterns” if their class has at least two-
thirds of the members. Otherwise, they are simply
labeled “unassigned” for further processing in the
next step. Consistency of these categorizations is
checked across the two different breakup
schemes((1+c)P; and (1-¢)P1 clusters). If a pat-
tern’s category is not consistent, it is labeled as
“unassigned”. Only unassigned patterns are car-
ried forward to the next step-they comprise the
ne patterns for step 2. The “core patterns” are
kept aside to be masked and the “outliers” dis-
carded.

In steps 2 and 3, the essential scheme of
breaking up the remaining unassigned sample
patterns into small clusters and labeling them
using a majority rule remains the same. In these
steps, an attempt is made to quickly resolve the

remaining cases by relaxing the majority rule.

4. The Algorithm

Some notation, introduced in the last section,
is defined more formally here. n; is the number
of sample patterns remaining unassigned at the
start of the i-th step of the outlier detection phase
(phase I). m; is the average breakup cluster size
and P;, where P; = n; / m;, is the number of clusters

to form in the same i-th step of phase I. c is a

factor used in sensitivity analysis in the first step
of phase I. The training set is broken up into
(1+c)P; and (1-¢)P; clusters for this sensitivity
analysis. q is the minimum cluster size for
masking.

4.1 Phase | - Discard Outlier Patterns

(Step 1]

1. Breakup the training set into (1+c)P; and (1-¢)
P; small clusters using a k-means (average)
clustering procedure.

2. For each set of clusters, label a pattern as
“outlier” if its class has less than one-third of
the members in its cluster ; label as “core
pattern” if its class has at least two-third of
the members and as “unassigned” otherwise.

3. Check consistency of these labels across the
two sets of clusters. Any inconsistently labeled
pattern is relabeled as “unassigned”.

4. “Unassigned” patterns are carried over to step
2. the “outlier” patterns are discarded and the

“core patterns” retained for masking.

[Step 2]

1. Breakup the n2 remaining “unassigned”
patterns into P2 (= nz/ mo) small clusters using
a clustering procedure that can produce a pre-
specified number of clusters.

2. Discard a pattern as “outlier” if its class has
less than 50% of the members in its cluster,
save it as “core pattern” if its class has more
than 50% of the members and carry it over

to step 3 as “unassigned” otherwise.

[Step 3]
1. Breakup the n3 remaining “unassigned” pat-
terns into P3 (= n3/ms) small clusters using a

clustering procedure that can produce a pre-

62 ik

S A RN S

specified number of clusters.
2. Discard a pattern as “outlier” if its class has
less than 50% of the members in its cluster,

save it as “core pattern” otherwise.

4.2 Phase Il - Generate Masking Functions

1. Initialize class index i=0.

2. Let i=i+1. If i>K, where K is the total number
of classes, stop. Otherwise, set j=1 and KL; =
1, where KL; is the number of unmasked class
1 clusters at the j-th stage of breaking up
unmasked patterns. Let these unmasked clus-
ters be indexed as Cj, Ciz, -, Cikyy.

3. Using a quadratic masking function f(x), set
up an LP as follows for each unmasked cluster
Cik, k=1, -, KL; :

Minimize &
st
flep(x) >= ¢ forall pattern vectors X in cluster
Cik of class i,
f i(tjk(x) < - ¢ for all pattern vectors x in classes
other than class i,

& >= a small positive constant.

where f'cix(x) is the masking function for cluster
Cik of class i

Solve the LP for each unmasked cluster. If all
LP solutions are feasible and optimal, the masking
of class i is complete. Go to step 2 to mask next
class. Otherwise, when some or all LPs are fea-
sible, save all feasible masking functions obtained
and go to step 4.

4. Let KL;" be the number of clusters with
infeasible LP solutions at the j-th stage.
Subdivide (breakup) the sample patterns in
these infeasible clusters into KL;., (where KL;-,
> Kl1;') small clusters using a clustering pro-

cedure that can produce a prespecified number
of clusters. Discard as “outliers” all sample
patterns that are from clusters of size q or less.

5. Set j=)+1. KL;is the number of unmasked class
i clusters at this new stage. These unmasked
clusters are indexed as before as C;;, Ci, -,
Ciki;. Go back to step 3.

5. Computational Results

All experimental results have been obtained by
implementing this algorithm on SAS. The linear
programming algorithm implemented in SAS OR
is based on simplex method. For clustering, the
average linkage method of hierarchical clustering

was used.
5.1 Vowel Classification

The vowel classification problem is described
in Lippmann (1988) and has been used to compare
different classifiers. It is based on the vowel
format data of Peterson and Barney (1952). The
data was generated from the spectrographic
analysis of vowels in words formed by “h”,
followed by a vowel, followed by a “d” and con-
sists of two-dimensional patterns. The words
were spoken by 67 persons, including men,
women, and children. The data on 10 vowels was
split into two sets — 338 examples each for the
training and test sets. Four classifiers - KNN,
Gaussian, two-layer neural networks, and feature
map ~ were compared on this dataset (Lippmann,
1988). All classifiers had similar error rates
ranging from 18 to 22.8%. The two-layer back
propagation network with 50 hidden units took
at least 50,000 iterations to obtain an error rate
of 20 percent.

<Table 1> shows the results of using different

23 GFE o188 ¥

i

oy

63

A

{Table 1> Results of using different cluster sizes in phase | for the Vowel Classification problem and other

classifiers
Training and test results of Vowel Classification problem Performance of other classifiers
Cluster sizes 4 of Outliers | # of Outliers .Erro)r‘ ratfesi (Error rates in the same test sets
M=, m,m; found in found in In test sets Two-Layer neural Bavesiz
N net. with KNN | avesan
phase [phase [phase II LP method 50 hidden units Classifier
M=6,4,3 57 17 226
M=6,4,4 52 27 225
M=653 61 13 22.8
M=654 58 20 204
M=743 58 17 21
M=744 53 24 215
M=753 61 14 21.3 . .
M=754 38 21 19.8 198 2 2
M=76,3 64 11 21.3
M=76,4 63 11 213
M=8§ 4,3 38 16 219
M=84,4 33 26 19.2
M=853 61 13 194
M=8§54 8 20 20.7

phase I cluster sizes in this procedure. The overall
error rate is quite stable across the variety of
phase I cluster sizes and is in the 19.2 to 22.8%
range with one being 24.6%. This fact is often
evident in other problems too, as will be shown,
where the same cluster size combinations are
used. The total number of outliers found (phases
I and II combined) is also very consistent across
the cluster size combinations. Because of outliers
found in phase II, clean-up phase Il runs were
made. Test results for other classifiers are
reported in <Table 1> as well. The reported error
rates of other classifiers are the best ones of
several trials. Compared to other classifiers
reported, competitive error rate is generally

achieved across all cases.

5.2. Noised Normal Distributions

An obvious question about this method is, how

well would the outlier detection heuristic work

on classes with dense overlap? To test the
heuristic under those circumstances, the following

two problems were tested :

Problem 1 - A simple 2-class problem where
both classes are described by Normal distribu-
tions with different means, and with covariance
matrices equal to identity I. A 4-dimensional
problem with mean vectors [0 0 00l and [1 11
1] was tried. The optimal Bayes error rate is 15.2%

in this case.

Problem 2- A 2-class problem where both
classes are described by Normal distributions
with zero mean vectors and covariance matrices
equal to I and 41. The optimal Bayes error rate
for a 4-dimensional problem is 17.64% and for

a 8-dimensional problem is 9%

Both problems were simulated on randomly
generated training sets of different sizes. <Tables
2> and <Tables 3> show the results. The results

64 2 e

show that for both problems, the error rate
generally decreases as the training set size is
increased and tends to the theoretical optimal
Bayes error rate. A randomly generated test set
of 400 examples was used for each problem. The
table entries M =7, 5, 3 etc. indicate the average
cluster sizes used in each step of the three-step
phase I procedure. The <Tables 2> and <Table
3> show that the error rates are fairly stable for
different combinations of these parameters.

(Table 2> Results for Noised Normal Distribution
- Problem 1

Cluster # of # of Error rates (%)

sizes | outliers | outliers Neural net.
M=m;,mo | found in | found in Lp with 8 hidden
phase I | phase I | phase If method units

Number of sample patterns (n = 180)

M=6,5 23 0 173
M=75 27 0 176 187
M=85 27 0 19

{Table 3) Results for Noised Normal Distribution
- Problem 2

Cluster | # of # of

. . . Error rates (%)
sizes |outliers | outliers

M = mymdffound in/found in| [p Neural net with
8, 15 hidden
method o

phase I |phase I|phase II units each

Number of sample patterns (n = 180), 4-dimension

M=65 29 0 19

M=75 29 0 19.2 195

M=85 29 0 19

Number of sample patterns (n = 400), 8-dimension
M=65| 38 15 105
M=75| 4 20 112 118
M=85| 63 3 12

6. Conclusion

The method in this paper has overcome some

limitations of current LP formulations by inte-
grating nonlinear masking(discriminant) func-
tions and heuristic to delete outlier patterns and
has been able to construct a solid classifier for
general purpose classification problems with
relatively good classification performance.

The discriminant functions used in this re-
search are quadratic. Although these restricted
forms of discriminant functions could achieve
good results, more general forms of discriminant
functions can be considered. Further research on
developing the general masking functions for
cover some arbitrary class regions is now being
investigated. Also the generalization capabilities
of the LP methods in data poor regions of high
dimensional input space should be explored
further.

References

[1] Abe, S., “Fuzzy Function Approximators
with Ellipsoidal Regions”, IEEE Tran-
sactions on Systems, Man, and Cyberne-
tics-Part B : Cybernetics, Vol.29, No.4
(August 1999).

(2] Duda, R.O. and PE. Hart, Pattern clas-
sification and scene analysis. New York :
John Wiley & Sons, 1973.

(3] Everitt, B.S., Cluster analysis (2nd ed.).
London : Heinemann Educational Books
Ltd., 19%0.

[4] Freed, N. and F. Glover, A linear program-
ming approach to the discriminant problem.
Decision Sciences, No.12(1981), pp.68-74.

{5] Freed, N. and F. Glover, Evaluating alter-
native linear programming models to solve
the two-group discriminant problem. Deci-
sion Sciences, No.17(1986), pp.151-162.

[6] Glover, F., S. Keene and B. Duea, A new

class of models for the discriminant prob-
lem. Decision Sciences, No.19(1988), pp.
269-280.

[7] Hartigan, J.A., Clustering algorithms. New
York : John Wiley & Sons, 1975.

[8] Huang, W.Y. and R.P. Lippmann, “Neural
net and traditional classifiers. In D. Ander-
son (Ed.)”, Neural Information Processing
Systems, New York : American Institute of
Physics, (1988) pp.387-396.

[9] Koehler, G.]. and S. Erenguc, * Misclassifi-
cations in Linear Discriminant Analysis”,
Decision Sciences, No.21(1990), pp.23-85.

[10] Lippmann, R.P., “Neural network classifiers
for speech recognition”, The Lincoln Labo+
ratory Journal, No.1(1)(1988), pp.107-1283.

[11] Lippmann, R.P., “Pattern classification using

neural networks”, IEEE Communications

(12]

[13]

[14]

[15]

a4
.
K
A
el
4
A

65

Magazine, No.27(1989), pp.47-64.
Peterson, G.E. and H.L. Bamney, “Control
methods used in a study of vowels”, Journal
of the Accoustic Society of America, No.24
(1952), p.175.

Rubin, P.A., “A comparision of linear pro-
gramming and parametric approaches to the
two- group discriminant problem”, Decision
Sciences., No.21(1990), pp.373-385.

Rubin, P.A., “Separation failure in linear
programming discriminant models”, Deci-
sion Sciences, No.22(1991), pp.519-535.
Rumelhart, D.E., G.E. Hinton and R.].
Williams, “Learning Internal Representa-
tions by Error Probagation”, Rumelhart and
McCleland (eds.), Parallel Distributed Pro-
cessing : Explorations in Microstructure of
Cognition, Vol.l : Foundations, Cambridge,
Massachusetts : The MIT Press, 1986.

