• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.033 seconds

Flavonoids from the Leaves of Ailanthus altissima Swingle and their Antioxidant Activity

  • Lee, Min-Kyung;Kim, Su-Yeon;Park, Ji-Hae;Lee, Do-Gyeong;Lee, Dae-Young;Kim, Geum-Soog;Kim, Yong-Bum;Han, Dae-Seok;Lee, Chang-Ho;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.56 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • Phytochemical studies on the leaves of Ailanthus altissima (Simaroubaceae) have not been reported previously. Thus, the authors isolated and identified secondary metabolites from A. altissima. Dried and powdered leaves were extracted with 80% aqueous methanol, and the concentrated extract was successively partitioned with ethyl acetate, n-butanol, and water. Four flavonoids were isolated from the ethyl acetate fraction through repeated silica gel and octadecyl silica gel column chromatography. Spectroscopic data including NMR, MS, and IR allowed for identification of the chemical structures as quercetin (1), afzelin (2), quercitrin (3), and isoquercitrin (4). This is the first report of the isolation of these compounds from A. altissima. The four isolated flavonoids 1-4 as well as solvent fractions (ethyl acetate, n-butanol, and water), were evaluated for DPPH radical scavenging activity.

Fabrication and Thermophysical Properties of Al2O3-Based Multicomponent Composites by Sol-Gel Process (알루미나가 포함된 복합산화물의 제조와 열물성 특성평가)

  • Lim, Saet-Byeol;You, Hee-Jung;Hong, Tae-Whan;Jung, Mie-Won
    • Korean Journal of Materials Research
    • /
    • v.20 no.9
    • /
    • pp.472-477
    • /
    • 2010
  • $Al_2O_3$ has received wide attention with established use as a catalyst and growing application in structural or functional ceramic materials. On the other hand, the boehmite (AlO(OH)) obtained by sol-gel process has exhibited a decrease in surface area during phase transformation due to a decline in surface active site at high temperature. In this work, $Al_2O_3$-CuO/ZnO (ACZ) and $Al_2O_3$-CuO/CeO (ACC) composite materials were synthesized with aluminum isopropoxide, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate or zinc (II) nitrate hexahydrate. Moreover, the Span 80 as the template block copolymer was added to the ACZ/ACC composition to make nano size particles and to keep increasing the surface area. The ACZ/ACC synthesized powders were characterized by Thermogravimetry-Differential Thermal analysis (TG/DTA), X-ray Diffractometer (XRD), Field-Emmision Scanning Electron Microscope (FE-SEM), Bruner-Emmett-Teller (BET) surface analysis and thermal electrical conductivity (ZEM-2:M8/L). An enhancement of surface area with the addition to Span 80 surfactant was observed in the ACZ powders from 105 $m^2$/g to 142 $m^2$/g, and the ACC powders from 103 $m^2$/g to 140 $m^2$/g, respectively.

An Effect of Fluoride Recharging on Fluoride Release and Surface Change of Fluoride-Releasing Restorative Materials (불소방출성 수복재의 불소 재충전에 따른 불소유리와 표면변화)

  • Moon, Jang-Won;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.25-32
    • /
    • 2005
  • The purpose of this study was to examine an effect of fluoride recharging on fluoride release and surface change of fluoride-releasing restorative materials. Six commercially available fluoride releasing restorative materials (Fuji II LC Improved: FL, Compoglass F: CF, Dyract AP: DA, F2000: FT, Gradia Direct: GD, and Tetric Ceram: TC) were selected as experimental materials. Disk specimens were fabricated with split teflon mold to the final dimensions of 15 mm in diameter and 1 mm in thickness. Ten samples of each material were fabricated and stored in deionized water at $37^{\circ}C{\pm}1^{\circ}C$ for 3 months. Before fluoride recharging, all specimens were polished sequentially from #800 to #2000 emery papers. Fluoride recharging was done at 5-day interval using 2.0% NaF gel. The release of fluoride into the storage water was monitored using a fluoride ion electrode. Data were analyzed by one-way ANOVA and Tukey's multiple range test. The results obtained were summarized as follows; 1. Fluoride recharge capability were FL > CF > DA and TC group after 12 times exposure to 2.0% NaF gel (P<0.05). 2. All the experimental materials, except for FT group, showed the increase of fluoride release and surface roughness. 3. Fluoride-releasing rates returned to base line within 3 days.

Photoluminescence and Fabrication of Zirconia Nanofibers from Electrospinning an Alkoxide Sol Templated on a Polyvinyl Butyral (폴리비닐 부티랄에 붙힌 지르코늄 알콕시드 졸을 사용한 전기방사에서 지르코니아 나노섬유 제조와 광발광)

  • Ko, Tae-Gyung;Han, Kyu-Suk;Rim, Tae-Kyun;Oh, Seoung-Gyu;Han, Sang-Whan
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.4
    • /
    • pp.343-352
    • /
    • 2010
  • A zirconia gel/polymer hybrid nanofiber was produced in a nonwoven fabric mode by electrospinning a sol derived from hydrolysis of zirconium butoxide with a polyvinyl butyral. Results indicated that the hydroxyl groups on the vinyl alcohol units in the backbone of the polymer were involved in the hydrolysis as well as grafting the hydrolyzed zirconium butoxide. In addition, use of acetic acid as a catalyst resulted in further hydrolysis and condensation in the sol, which led to the growth of -Zr-O-Zr- networks among the polymer chains. These networks gradually transformed into a crystalline zirconia structure upon heating. The as-spun fiber was smooth but partially wrinkled on the surface. The average fiber diameter was $690{\pm}110\;nm$. The fiber exhibited a strong but broad blue photoluminescence with its maximum intensity at a wavelength of ~410 nm at room temperature. When the fiber was heat-treated at $400^{\circ}C$, the fiber diameter shrunk to $250{\pm}60\;nm$. Nanocrystals which belonged to a tetragonal zirconia phase and were ~5 nm in size appeared. A strong white photoluminescence was observed in this fiber. This suggests that oxygen or carbon defects associated with the formation of the nanocrystals play a role in generating the photoluminescence. Further heating to $800^{\circ}C$ resulted in a monoclinic phase beginning to form In the heat-treated fibers, coloring occurred but varied depending on the heating temperature. Crystallization, coloring, and phase transition to the monoclinic structure influenced the photoluminescence. At $600^{\circ}C$, the fiber appeared to be fully crystallized to a tetragonal zirconia phase.

Purification and Characterization of Cyclodextrin Glucanotransferase from Bacillus sp. El (Bacillus sp. E1이 생성하는 Cyclodextrin Glucanotransferase의 정제 및 특성)

  • Park, Cheon-Seok;Woo, Eui-Jeon;Kuk, Seung-Uk;Seo, Byung-Cheol;Park, Kwan-Hwa;Lim, Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.2
    • /
    • pp.156-163
    • /
    • 1992
  • Bacillus sp. was isolated from soil for its strong activity of cyclodextrin glucanotransferase (CGTase, EC 2.4.1.19). The enzyme was purified by gel filtration and anion exchange column chromatography using FPLC. The purified enzyme exhibited its maximum CGTase activity in the pH range of 6~8 and the temperature range of 50~$70^{\circ}C$. The molecular weight was estimated as 114,000 by SDS-PAGE. The isoelectric point of the enzyme was 4.3. The CGTase of Bacillus sp. E l produced $\beta$-cyclodextrin mainly and did not produce a-cyclodextrin. The product ratio of $\beta$-cyclodextrin to $\gamma$-cyclodextrin was 7:l.

  • PDF

Synthesis and Characterization of Fe Doped TiO2 Nanoparticles by a Sol-Gel and Hydrothermal Process

  • Kim, Hyun-Ju;Jeong, Kwang-Jin;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.249-252
    • /
    • 2012
  • Fe doped $TiO_2$ nanoparticles were prepared under high temperature and pressure conditions by mixture of metal nitrate solution and $TiO_2$ sol. Fe doped $TiO_2$ particles were reacted in the temperature range of 170 to $200^{\circ}C$ for 6 h. The microstructure and phase of the synthesized Fe doped $TiO_2$ nanoparticles were studied by SEM (FE-SEM), TEM, and XRD. Thermal properties of the synthesized Fe doped $TiO_2$ nanoparticles were studied by TG-DTA analysis. TEM and X-ray diffraction pattern shows that the synthesized Fe doped $TiO_2$ nanoparticles were crystalline. The average size and distribution of the synthesized Fe doped $TiO_2$ nanoparticles were about 10 nm and narrow, respectively. The average size of the synthesized Fe doped $TiO_2$ nanoparticles increased as the reaction temperature increased. The overall reduction in weight of Fe doped $TiO_2$ nanoparticles was about 16% up to ${\sim}700^{\circ}C$; water of crystallization was dehydrated at $271^{\circ}C$. The transition of Fe doped $TiO_2$ nanoparticle phase from anatase to rutile occurred at almost $561^{\circ}C$. The amount of rutile phase of the synthesized Fe doped $TiO_2$ nanoparticles increased with decreasing Fe concentration. The effects of synthesis parameters, such as the concentration of the starting solution and the reaction temperature, are discussed.

Fabrication and Characterization of Biphasic Calcium Phosphate Scaffolds with an Unidirectional Macropore Structure Using Tertiary-Butyl Alcohol-Based Freeze-Gel Casting Method (동결-젤 주조 공정 기반 삼차부틸알코올을 이용한 단일방향 기공구조를 가지는 이상인산칼슘 세라믹 지지체의 제조 및 특성평가)

  • Kim, Kyeong-Lok;Ok, Kyung-Min;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.263-268
    • /
    • 2013
  • Porous biphasic calcium phosphate scaffolds were fabricated by a freeze-gel casting technique using a tertiary-butyl alcohol (TBA)-based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The crystallinity, micro structure, pore configuration, bulk density, and compressive strength for the scaffolds were investigated with X-ray diffractometery, scanning electron microscopy analysis, a water immersion method, and a universal test machine. The results revealed that the sintered porosity and pore size generally resulted in a high solid loading which resulted in low porosity and small pore size, which relatively increased the higher compressive strength. After being sintered at $1100-1300^{\circ}C$, the scaffolds showed an average porosity and compressive strength in the range 35.1-74.9% and 65.1-3.0 MPa, respectively, according to the processing conditions.

Dielectric Properties of K(Ta0.6Nb0.4)O3 Thin Films Prepared by Sol-Gel Method for Microwave Applications (마이크로웨이브 응용을 위한 솔-젤법으로 제작한 K(Ta0.6Nb0.4)O3 박막의 유전 특성)

  • Kwon, Min-Su;Lee, Sung-Gap;Kim, Kyeong-Min;Lee, Sam-Haeng;Kim, Young-Gon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.403-407
    • /
    • 2018
  • In this study, double layer KTN/STO thin films were fabricated on $Pt/Ti/SiO_2/Si$ substrate, their structural and electrical properties were measured according with the number of STO coatings, and their applicability to microwave materials was investigated. The average grain size was about 80~90 nm, the average thickness of the 6-coated KTN thin film was about 320 nm, and the average thickness of the STO thin film coated once was about 45~50 nm. The dielectric constant decreased with increasing frequency, and as the number of STO coatings increased, the rate of change of the dielectric constant with the applied electric field decreased. The tunability of the KTN thin film showed a maximum value of 19.8% at 3 V. The figure of merit of the KTN/1STO thin film was 9.8 at 3 V.

The conversion of ammonium uranate prepared via sol-gel synthesis into uranium oxides

  • Schreinemachers, Christian;Leinders, Gregory;Modolo, Giuseppe;Verwerft, Marc;Binnemans, Koen;Cardinaels, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1013-1021
    • /
    • 2020
  • A combination of simultaneous thermal analysis, evolved gas analysis and non-ambient XRD techniques was used to characterise and investigate the conversion reactions of ammonium uranates into uranium oxides. Two solid phases of the ternary system NH3 - UO3 - H2O were synthesised under specified conditions. Microspheres prepared by the sol-gel method via internal gelation were identified as 3UO3·2NH3·4H2O, whereas the product of a typical ammonium diuranate precipitation reaction was associated to the composition 3UO3·NH3·5H2O. The thermal decomposition profile of both compounds in air feature distinct reaction steps towards the conversion to U3O8, owing to the successive release of water and ammonia molecules. Both compounds are converted into α-U3O8 above 550 ℃, but the crystallographic transition occurs differently. In compound 3UO3·NH3·5H2O (ADU) the transformation occurs via the crystalline β-UO3 phase, whereas in compound 3UO3·2NH3·4H2O (microspheres) an amorphous UO3 intermediate was observed. The new insights obtained on these uranate systems improve the information base for designing and synthesising minor actinide-containing target materials in future applications.

Effect of Graphene Oxide Addition to Tin Oxide Aerogel for Photocatalytic Rhodamine B Degradation (주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해)

  • Kim, Taehee;Choi, Haryeong;Kim, Younghun;Lee, Jihun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • SnO2 has the wide bandgap which allows it to be used as the photocatalyst. There are many studies to enhance the photocatalytic properties of SnO2. In this study, 3-dimensional SnO2 aerogel was synthesized using epoxide-initiated sol-gel method for the optimal specific surface area. Also, graphene oxide (GO) was added before the gelation process of the aerogel to maximize the specific surface area. Addition of 0.5 wt% of GO would possibly enhance the specific surface area by 1.7 times compared with the bare tin oxide aerogel. Furthermore, enhanced specific surface area could degrade 67.3% of initial Rhodamine B in 120 minutes. To compare with the bare SnO2 aerogel, 0.5 wt% GO addition to SnO2 could double the reaction rate of the photocatalytic degradation.