References
- Kim, S.P., M.Y. Choi, and H.C. Choi, "Characterization and photocatalytic performance of SnO2-CNT nanocomposites", Applied Surface Science, 357, 302-308 (2015). https://doi.org/10.1016/j.apsusc.2015.09.044
- Zhu, X., et al., "Efficient removal of organic dye pollutants using covalent organic frameworks", AIChE Journal, 63(8), 3470-3478 (2017). https://doi.org/10.1002/aic.15699
- Sreekanth, T.V.M., J.-J. Shim, and Y.R. Lee, "Degradation of organic pollutants by bio-inspired rectangular and hexagonal titanium dioxide nanostructures", Journal of Photochemistry and Photobiology B: Biology, 169, 90-95 (2017). https://doi.org/10.1016/j.jphotobiol.2017.03.006
- Wang, W., M.O. Tade, and Z. Shao, "Research progress of perovskite materials in photocatalysis- and photovoltaicsrelated energy conversion and environmental treatment," Chemical Society Reviews, 44(15), 5371-5408 (2015). https://doi.org/10.1039/c5cs00113g
- Upadhyay, R.K., N. Soin, and S.S. Roy, "Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review," RSC Advances, 4(8), 3823-3851 (2014). https://doi.org/10.1039/C3RA45013A
- Qin, C., et al., "Fabrication and visible-light photocatalytic behavior of perovskite praseodymium ferrite porous nanotubes", Journal of Power Sources, 285, 178-184 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.096
- Yang, Z., et al., "Highly efficient adsorbent for organic dyes based on a temperature- and pH-responsive multiblock polymer", Journal of Applied Polymer Science, 135(34) 46626 (2018). https://doi.org/10.1002/app.46626
- Zucker, I., et al., "Influence of wastewater particles on ozone degradation of trace organic contaminants", Environmental Science & Technology, 49(1), 301-308 (2015). https://doi.org/10.1021/es504314t
- Lee, D.-S., et al., "Effect of hydrothermal temperature on photocatalytic properties of TiO2 nanotubes", Current Applied Physics, 14(3), 415-420 (2014). https://doi.org/10.1016/j.cap.2013.12.018
- Pant, A., et al., "A magnetically recyclable photocatalyst with commendable dye degradation activity at ambient conditions", Scientific Reports, 8(1), 14700 (2018). https://doi.org/10.1038/s41598-018-32911-3
- Wang, M., et al., "Bi3.64Mo0.36O6.55/Bi2MoO6 heterostructure composite with enhanced photocatalytic activity for organic pollutants degradation", Journal of Alloys and Compounds, 766, 1037-1045 (2018). https://doi.org/10.1016/j.jallcom.2018.07.062
- Zhang, Y., et al., "Effect of TiO2 on photocatalytic activity of polyvinylpyrrolidone fabricated via electrospinning", Composites Part B: Engineering, 80, 355-360 (2015). https://doi.org/10.1016/j.compositesb.2015.05.040
- Wang, H., et al., "Facile preparation of well-combined ligninbased carbon/ZnO hybrid composite with excellent photocatalytic activity", Applied Surface Science, 426, 206-216 (2017). https://doi.org/10.1016/j.apsusc.2017.07.112
- Anjum, M., et al., "Remediation of wastewater using various nano-materials", Arabian Journal of Chemistry, 2016.
- Karri, R.R., et al., "Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network", Journal of Environmental Management, 223, 517-529 (2018). https://doi.org/10.1016/j.jenvman.2018.06.027
- Pastrana-Martinez, L.M., et al., "Advanced nanostructured photocatalysts based on reduced graphene oxide-TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye", Applied Catalysis B: Environmental, 123-124, 241-256 (2012). https://doi.org/10.1016/j.apcatb.2012.04.045
- Khalid, N.R., et al., "Graphene modified Nd/TiO2 photocatalyst for methyl orange degradation under visible light irradiation", Ceramics International, 39(4), 3569-3575 (2013). https://doi.org/10.1016/j.ceramint.2012.10.183
- Filice, S., et al., "Graphene oxide and titania hybrid Nafion membranes for efficient removal of methyl orange dye from water", Carbon, 82, 489-499 (2015). https://doi.org/10.1016/j.carbon.2014.10.093
- Bhattacharjee, A., M. Ahmaruzzaman, and T. Sinha, "A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds", Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 136, 751-760 (2015). https://doi.org/10.1016/j.saa.2014.09.092
- Kumar, M., et al., "Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight", Materials Letters, 215, 121-124 (2018). https://doi.org/10.1016/j.matlet.2017.12.074
- Zhu, L.-P., et al., "Synthesis and photocatalytic properties of core-shell structured α-Fe2O3@SnO2 shuttle-like nanocomposites", CrystEngComm, 13(14), 4486-4490 (2011). https://doi.org/10.1039/c1ce05238a
- Oh, T., "Effect of double junctions in nano structure oxide materials and gas sensitivity", Transactions on Electrical and Electronic Materials, 19(5), 382-386 (2018). https://doi.org/10.1007/s42341-018-0055-3
- Shyamala, R. and L. Gomathi Devi, "Reduced graphene oxide/SnO2 nanocomposites for the photocatalytic degradation of rhodamine B: Preparation, characterization, photosensitization, vectorial charge transfer mechanism and identification of reaction intermediates", Chemical Physics Letters, 748, 137385 (2020). https://doi.org/10.1016/j.cplett.2020.137385
- Wang, N., J. Xu, and L. Guan, "Synthesis and enhanced photocatalytic activity of tin oxide nanoparticles coated on multi-walled carbon nanotube", Materials Research Bulletin, 46(9), 1372-1376 (2011). https://doi.org/10.1016/j.materresbull.2011.05.014
- Tammina, S.K., B.K. Mandal, and N.K. Kadiyala, "Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles", Environmental Nanotechnology, Monitoring & Management, 10, 339-350 (2018). https://doi.org/10.1016/j.enmm.2018.07.006
- Dai, S. and Z. Yao, "Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity", Applied Surface Science, 258(15), 5703-5706 (2012). https://doi.org/10.1016/j.apsusc.2012.02.065
- Pal, M., S. Bera, and S. Jana, "Sol-gel based simonkolleite nanopetals with SnO2 nanoparticles in graphite-like amorphous carbon as an efficient and reusable photocatalyst", RSC Advances, 5(92), 75062-75074 (2015). https://doi.org/10.1039/C5RA12322D
- Hejazi Juybari, S.A. and H. Milani Moghaddam, "Facile fabrication of porous hierarchical SnO2 via a self-degraded template and their remarkable photocatalytic performance", Applied Surface Science, 457, 179-186 (2018). https://doi.org/10.1016/j.apsusc.2018.06.259
- Dhanalakshmi, M., et al., "Fabrication of novel surface plasmon resonance induced visible light driven iridium decorated SnO2 nanorods for degradation of organic contaminants", Journal of Alloys and Compounds, 763, 512-524 (2018). https://doi.org/10.1016/j.jallcom.2018.05.340
- Parale, V.G., et al., "Enhanced photocatalytic activity of a mesoporous TiO2 aerogel decorated onto three-dimensional carbon foam", Journal of Molecular Liquids, 277, 424-433 (2019). https://doi.org/10.1016/j.molliq.2018.12.080
- Dhavale Rushikesh, P., et al., "Enhancement in the textural properties and hydrophobicity of tetraethoxysilane-based silica aerogels by phenyl surface modification", J. Microelectron. Packag. Soc., 27(2), 27-32 (2020). https://doi.org/10.6117/KMEPS.2020.27.2.027
- Parale, V.G., et al., "Hydrophobic TiO2-SiO2 composite aerogels synthesized via in situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity", Ceramics International, 46(4), 4939-4946 (2020). https://doi.org/10.1016/j.ceramint.2019.10.231
- Parale, V.G., et al., "SnO2 aerogel deposited onto polymer-derived carbon foam for environmental remediation", Journal of Molecular Liquids, 287, 110990 (2019). https://doi.org/10.1016/j.molliq.2019.110990
- Hyun, S.H., J.J. Kim, and H.H. Park, "Synthesis and characterization of low-dielectric silica aerogel films", Journal of the American Ceramic Society, 83(3), 533-540 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01230.x
- Lee, K.-Y., et al., "chemically bonded thermally expandable microsphere-silica composite aerogel with thermal insulation property for industrial use", J. Microelectron. Packag. Soc., 26(2), 23-29 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0023
- Zhang, P., et al., "SnO2-core carbon-shell composite nanotubes with enhanced photocurrent and photocatalytic performance", Applied Catalysis B: Environmental, 166-167, 193-201 (2015). https://doi.org/10.1016/j.apcatb.2014.11.031
- Liang, Y., et al., "Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4", Nano Research, 11(8), 4049-4061 (2018). https://doi.org/10.1007/s12274-018-1988-x
- Begum, S. and M. Ahmaruzzaman, "Biogenic synthesis of SnO2/activated carbon nanocomposite and its application as photocatalyst in the degradation of naproxen", Applied Surface Science, 449, 780-789 (2018). https://doi.org/10.1016/j.apsusc.2018.02.069
- Ding, S.-S., et al., "The mechanism of enhanced photocatalytic activity of SnO2 through fullerene modification", Current Applied Physics, 17(11), 1547-1556 (2017). https://doi.org/10.1016/j.cap.2017.07.008
- Yoon, T., W.S. Jo, and T.-S. Kim, "High-yield etching-free transfer of graphene: A fracture mechanics approach", J. Microelectron. Packag. Soc., 21(2), 59-64 (2014). https://doi.org/10.6117/kmeps.2014.21.2.059
- Lee, T.-W. and H.-H. Park, "The effect of graphene on the electrical properties of a stretchable carbon electrode (in Kor.)", J. Microelectron. Packag. Soc., 21(4), 77-82 (2014). https://doi.org/10.6117/kmeps.2014.21.4.077
- Bang Seung, W., et al., "Improvement of electrochemical reduction characteristics of carbon dioxide at porous copper electrode using graphene (in Kor.)", J. Microelectron. Packag. Soc., 25(4), 105-109 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.105
- Kim, T., et al., "Facile synthesis of SnO2 aerogel/reduced graphene oxide nanocomposites via in situ annealing for the photocatalytic degradation of methyl orange", Nanomaterials, 9(3), 358 (2019). https://doi.org/10.3390/nano9030358
- Zhao, Z., D. Chen, and X. Jiao, "Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: comparison of aerogels prepared by freeze-drying and supercritical CO2(l) extraction", The Journal of Physical Chemistry C, 111(50), 18738-18743 (2007). https://doi.org/10.1021/jp075150b
- Kido, Y., et al., "Synthesis of monolithic hierarchically porous iron-based xerogels from iron(III) salts via an epoxide-mediated Sol-Gel process", Chemistry of Materials, 24(11), 2071-2077 (2012). https://doi.org/10.1021/cm300495j
- Rakibuddin, M. and R. Ananthakrishnan, "A novel Ag deposited nanocoordination polymer derived porous SnO2/NiO heteronanostructure for the enhanced photocatalytic reduction of Cr(vi) under visible light", New Journal of Chemistry, 40(4), 3385-3394 (2016). https://doi.org/10.1039/c5nj02755a
- ALOthman, Z.A., "A review: Fundamental aspects of silicate mesoporous materials", Materials, 5(12), 2874-2902 (2012). https://doi.org/10.3390/ma5122874