DOI QR코드

DOI QR Code

Fabrication of Fabric-based Wearable Devices with High Adhesion Properties using Electroplating Process

전해 도금을 이용한 높은 접착 특성을 갖는 섬유 기반 웨어러블 디바이스 제작

  • Kim, Hyung Gu (Department of Chemicals Engineering, Chonnam National University) ;
  • Rho, Ho Kyun (Energy Convergence Core Facility, Chonnam National University) ;
  • Cha, Anna (Department of Chemicals Engineering, Chonnam National University) ;
  • Lee, Min Jung (Department of Chemicals Engineering, Chonnam National University) ;
  • Park, Jun-beom (Next generation LED research Center, Korea Photonics Technology Institute) ;
  • Jeong, Tak (Next generation LED research Center, Korea Photonics Technology Institute) ;
  • Ha, Jun-Seok (Department of Chemicals Engineering, Chonnam National University)
  • 김형구 (전남대학교 신화학소재공학과) ;
  • 노호균 (전남대학교 CORE 에너지 융복합 전문 핵심연구지원센터) ;
  • 차안나 (전남대학교 신화학소재공학과) ;
  • 이민정 (전남대학교 신화학소재공학과) ;
  • 박준범 (한국광기술원 차세대 LED 연구센터) ;
  • 정탁 (한국광기술원 차세대 LED 연구센터) ;
  • 하준석 (전남대학교 신화학소재공학과)
  • Received : 2021.03.15
  • Accepted : 2021.03.30
  • Published : 2021.03.30

Abstract

In order to produce wearable displays with high adhesion while maintaining flexible characteristics, the adhesive method using electro plating method was carried out. Laser lift-off (LLO) transcription was also used to remove sapphire substrates from LEDs bonded to fibers. Afterwards, the SEM and EDS data of the sample, which conducted the adhesion method using electro plating, confirmed that copper actually grows through the lattice of the fiber fabric to secure the light source and fiber. The adhesion characteristics of copper were checked using Universal testing machine (UTM). After plating adhesion, the characteristics of the LLO transcription process completed and the LED without the transcription process were compared using probe station. The electroluminescence (EL) according to the enhanced current was measured to check the characteristics of the light source after the process. As the current increases, the temperature rises and the bandgap decreases, so it was confirmed that the spectrum shifted. In addition, the change in the electrical characteristics of the samples according to the radius change is confirmed using probe station. The radius strain also had mechanical strength that copper could withstand bending stress, so the Vf variation was measured below 6%. Based on these results, it is expected that it will be applied to batteries, catalysts, and solar cells that require flexibility as well as wearable displays, contributing to the development of wearable devices.

유연한 특성을 유지하면서 높은 접착력을 가진 웨어러블 디스플레이를 제작하기 위하여 전해도금법을 이용한 접착법을 진행하였다. 또한 섬유에 접착된 LED의 사파이어 기판을 제거하기 위하여 LLO 전사법을 이용하였다. 그 후 전해도금을 이용한 접착법을 진행한 샘플의 SEM, EDS 데이터를 통하여 실제로 구리가 섬유직물의 격자사이를 관통하여 성장하며 광원과 섬유를 고정시켜주는 것을 확인하였다. 구리의 접착특성을 확인하기 위하여 Universal testing machine (UTM)을 이용하여 측정하였다. 도금 접착 후 laser lift-off (LLO) 전사공정을 완료한 샘플과 전사공정을 진행하지 않은 LED의 특성을 probe station을 이용하여 비교하였다. 공정 이후의 광원의 특성을 확인하기 위하여 인가 전류에 따른 electroluminescence (EL)을 측정하였다. 전류가 증가할수록 온도가 상승하여 Bandgap이 감소하기 때문에 spectrum이 천이하는 것을 확인하였다. 또한 radius 변화에 따른 샘플의 전기적 특성 변화를 probe station을 이용하여 확인하였다. Radius 변형에도 구리가 bending stress를 견딜 수 있는 기계적 강도를 가지고 있어 Vf 변화는 6% 이하로 측정되었다. 이러한 결과를 토대로 웨어러블 디스플레이 뿐만 아니라 유연성이 필요한 배터리, 촉매, 태양전지 등에 적용되어 웨어러블 디바이스의 발전에 기여할 수 있을 것으로 기대한다.

Keywords

References

  1. Pan, S., Yang, Z., Chen, P., Deng, J., Li, H., & Peng, H, "Wearable Solar Cells by Stacking Textile Electrodes", Angewandte Chemie, 126(24), 6224-6228 (2014). https://doi.org/10.1002/ange.201402561
  2. Corbishley, P., & Rodriguez-Villegas, E, "Breathing Detection: Towards a Miniaturized, Wearable, Battery-operated Monitoring System", IEEE Transactions on Biomedical Engineering, 55(1), 196-204 (2007). https://doi.org/10.1109/TBME.2007.910679
  3. I. M. Koo, K. Jung, J. C. Koo, J. D. Nam, Y. K. Lee, & H. R Choi, "Development of Soft-actuator-based Wearable Tactile Display", IEEE Transactions on Robotics, 24(3), 549-558 (2008). https://doi.org/10.1109/TRO.2008.921561
  4. Kim, J., Campbell, A. S., de Avila, B. E. F., & Wang, J, "Wearable Biosensors for Healthcare Monitoring", Nature biotechnology, 37(4), 389-406 (2019). https://doi.org/10.1038/s41587-019-0045-y
  5. H. G. Kim, H. K. Rho, A. Cha, M. J. Lee, &J. S Ha, "CNTNi-Fabric Flexible Substrate with High Mechanical and Electrical Properties for Next-generation Wearable Devices", Journal of the Microelectronics and Packaging Society, 27(2), 39-44 (2020) https://doi.org/10.6117/KMEPS.2020.27.2.039
  6. Saraswat, J., & Bhattacharya, P. P "Effect of Duty Cycle on Energy Consumption in Wireless Sensor Networks", International Journal of Computer Networks & Communications, 5(1), 125 (2013). https://doi.org/10.5121/ijcnc.2013.5109
  7. Suh, S. E., & Roh, J. S, "A Study on Smart Fashion Product Development Trends," The Research Journal of the Costume Culture, 23(6), 1097-1115 (2015). https://doi.org/10.29049/rjcc.2015.23.6.1097
  8. J. H. Lee, J. Y. Song, S. M. Kim, Y. J. Kim, & A. Y Park, "Development of Polymer Elastic Bump Formation Process and Bump Deformation Behavior Analysis for Flexible Semiconductor Package Assembly", Journal of the Microelectronics and Packaging Society, 26(2), 31-43 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0031
  9. Gu, J. F., Gorgutsa, S., & Skorobogatiy, M "Soft capacitor Fibers using Conductive Polymers for Electronic Textiles", Smart Materials and Structures, 19(11), 115006 (2010). https://doi.org/10.1088/0964-1726/19/11/115006
  10. De Rossi, D., Della Santa, A., & Mazzoldi, A, "Dressware: Wearable Hardware", Materials Science and Engineering: C, 7(1), 31-35 (1999). https://doi.org/10.1016/0921-5107(90)90006-W
  11. Engin, M., Demirel, A., Engin, E. Z., & Fedakar, M, "Recent Developments and Trends in Biomedical Sensors", Measurement, 37(2), 173-188 (2005). https://doi.org/10.1016/j.measurement.2004.11.002
  12. S. J. Oh, B. S. Ma, H. J. Kim, C. Yang, & T. S Kim, "Measurement of Mechanical Properties of Thin Film Materials for Flexible Displays", Journal of the Microelectronics and Packaging Society, 27(3), 77-81 (2020) https://doi.org/10.6117/KMEPS.2020.27.3.077
  13. Yu, X. G., Li, Y. Q., Zhu, W. B., Huang, P., Wang, T. T., Hu, N., & Fu, S. Y, "A Wearable Strain Sensor Based on a car-Bonized Nano-sponge/silicone Composite for Human Motion Detection", Nanoscale, 9(20), 6680-6685 (2017). https://doi.org/10.1039/c7nr01011g
  14. Senthilkumar, S. T., & Selvan, R. K, "Fabrication and Performance Studies of a Cable-type Flexible Asymmetric Supercapacitor", Physical Chemistry Chemical Physics, 16(29), 15692-15698 (2014). https://doi.org/10.1039/c4cp00955j
  15. Wang, X., Liu, B., Liu, R., Wang, Q., Hou, X., Chen, Shen, G, "Fiber-based Flexible All-solid-state Asymmetric Supercapacitors for Integrated Photodetecting System", Angewandte Chemie, 126(7), 1880-1884 (2014). https://doi.org/10.1002/ange.201307581
  16. S. Choi, S. Kwon, H. Kim, W. Kim, J. H. Kwon, M. S. Lim & K. C. Choi, "Highly Flexible and Efficient Fabric-based Organic Light-emitting Devices for Clothing-shaped Wearable Displays", Scientific reports, 7(1), 1-8 (2017). https://doi.org/10.1038/s41598-016-0028-x
  17. Gupta, D. "Functional Clothing-Definition and Classification," Indian J. Fibre Text. Res. 36, 321 (2011)
  18. Weng, W., Chen, P., He, S., Sun, X., & Peng, H, "Smart Electronic Textiles", Angewandte Chemie International Edition, 55(21), 6140-6169. (2016). https://doi.org/10.1002/anie.201507333
  19. Cherenack, K. & van Pieterson, L, "Smart Textiles: Challenges and Opportunities", J. Appl. Phys. 112(09), 091301 (2012) https://doi.org/10.1063/1.4742728
  20. S. Kwon, H. Kim, S. Choi, Jeong, E. G., Kim, D., Lee, S., Choi, K. C "Weavable And Highly Efficient Organic Lightemitting Fibers for Wearable Electronics: A Scalable, Lowtemperature Process", Nano letters, 18(1), 347-356 (2018). https://doi.org/10.1021/acs.nanolett.7b04204
  21. Zhang, Z., Guo, K., Li, Y., Li, X., Guan, G., Li, H Peng, H "A Colour-tunable, Weavable Fibre-shaped Polymer Lightemitting Electrochemical Cell", Nature Photonics, 9(4), 233-238 (2015). https://doi.org/10.1038/nphoton.2015.37
  22. Yin, D., Chen, Z. Y., Jiang, N. R., Liu, Y. F., Bi, Y. G., Zhang, X. L, Sun, H. B "Highly Transparent and Flexible Fabric-Based Organic Light Emitting Devices for Unnoticeable Wearable Displays", Organic Electronics, 76, 105494 (2020). https://doi.org/10.1016/j.orgel.2019.105494
  23. Han, F., Li, J., Zhao, S., Zhang, Y., Huang, W., Zhang, Wong, C. P., "A Crack-based Nickel@ Graphene-wrapped Polyurethane Sponge Ternary Hybrid Obtained by Electrodeposition for Highly Sensitive Wearable Strain Sensors", Journal of Materials Chemistry C, 5(39), 10167-10175 (2017). https://doi.org/10.1039/C7TC03636A
  24. Y. J. Kang, H. Chung, M. S. Kim & W Kim, "Enhancement of CNT/PET Film Adhesion by Nano-scale Modification for Flexible All-solid-state Supercapacitors", Applied Surface Science, 355, 160-165 (2015). https://doi.org/10.1016/j.apsusc.2015.07.108
  25. Zhu, H. P., Zhu, Q. S., Zhang, X., Liu, C. Z., & Wang, J. J "Microvia Filling by Copper Electroplating using a Modified Safranine T as a Leveler", Journal of The Electrochemical Society, 164(9), D645 (2017). https://doi.org/10.1149/2.0111712jes
  26. Davis, J. R. (Ed.), "Copper and Copper Alloys", 446p, ASM international, Netherlands (2001).
  27. Farm, E., Kemell, M., Santala, E., Ritala, M., & Leskela, M, "Selective-area atomic Layer Deposition using Poly (Vinyl pyrrolidone) as a Passivation Layer", Journal of the Electrochemical Society, 157(1), K10 (2009). https://doi.org/10.1149/1.3250936
  28. J. Cho, C. Sone, Y. Park, & E. Yoon, "Measuring the Junction Temperature of III-nitride Light Emitting Diodes using Electro-luminescence Shift", Physica Status Solidi (A), 202(9), 1869-1873 (2005). https://doi.org/10.1002/pssa.200520041
  29. S. K. Hyun, Nakajima, H., Boyko, L. V., & Shapovalov, V. I, "Bending Properties of Porous Copper Fabricated by Unidirectional Solidification", Materials Letters, 58(6), 1082-1086 (2004). https://doi.org/10.1016/j.matlet.2003.08.021