• Title/Summary/Keyword: gel materials

Search Result 1,727, Processing Time 0.032 seconds

Electrical properties of the PLZT thin film capacitors by the sol-gel method (Sol-gel법을 이용한 PLZT박막 커패시터의 전기적 특성)

  • 박준열;정장호;이성갑;이영희
    • Electrical & Electronic Materials
    • /
    • v.9 no.7
    • /
    • pp.668-673
    • /
    • 1996
  • In this paper, (P $b_{1-x}$ L $a_{x}$)(Z $r_{0.52}$ $Ti_{0.48}$) $O_{3}$ (X=0-13[at%]) thin film were prepared by the Sol-Gel method, Multiple PLZT thin films were spin-coated on the Pt/Ti/ $SiO_{2}$Si substrate. The electrical properties of the films were investigated for varying the annealing temperature. In the PLZT(11/52/48) specimens, the dielectric ocnstant of 1236 and the polarization reversal time of 460[nm] were obtained and the breakdown of the film did not occur up to 1*10$^{10}$ cycles at the voltage of 7[V] by the bipolar acceleration. The remanent polarization and coercive field decreased with increasing the content of La in the range of 0-13[at%] and thin film of the PLZT(11/52/48) showed the value of 2.56[.mu.C/c $m^{2}$] and 21.1[kV/cm], respectively.ly.y.

  • PDF

Surface treatment of sol-gel bioglass using dielectric barrier discharge plasma to enhance growth of hydroxyapatite

  • Soliman, Islam El-Sayed;Metawa, Asem El-Sayed;Aboelnasr, Mohamed Abdel Hameed;Eraba, Khairy Tohamy
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2452-2463
    • /
    • 2018
  • Surface treatment of sol-gel bioglass is required to increase its biomedical applications. In this study, a dielectric barrier discharge (DBD) plasma treatment in atmospheric pressure was performed on the surface of [$SiO_2-CaO-P_2O_5-B_2O_3$] sol-gel derived glass. The obtained bioglass was treated by plasma using discharge current 12 mA with an exposure period for 30 min. The type of discharge can be characterized by measuring the discharge current and applied potential waveform and the power dissipation. Apatite formation on the surface of the DBD-treated and untreated samples after soaking in simulated body fluid (SBF) at $37^{\circ}C$ is characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), inductively coupled plasma (ICP-OES) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM/EDS). We observed a marked increase in the amount of apatite deposited on the surface of the treated plasma samples than those of the untreated ones, indicating that DBD plasma treatment is an efficient method and capable of modifying the surface of glass beside effectively transforming it into highly bioactive materials.

MWCNT thin film based supercapictor using spray deposition and gel electrolytes

  • Han, Song-Yi;Park, Sung-Hwak;Kim, Sung-Hyun;Kim, Sun-Min;Han, Joung-Hoon;Bae, Joon-Ho;Lee, Churl-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.465-465
    • /
    • 2011
  • In recent years, electrochemical supercapacitors have attracted much attention due to their high power density, long life cycles, and high efficiency. Some supercapacitors using CNTs have been reported, but there are several issues to be resolved for further development of CNT based supercapacitors. One issue is time consuming procedures to prepare CNT films, which may provide poor control of CNT uniformity over the large area of the substrates. Another is new electrolytes replacing the conventional liquid electrolytes in supercapacitors. In this work, We have successfully demonstrated that spray deposition method of multiwalled CNT films using gel electroytes could be promising for CNT-based supercapacitors on ITO substrates. Specific capacitances using gel electrolyte reached up to 1.5 F/g and 9 mF/$cm^2$, and internal resistance was 28 ${\Omega}$. Specific capacitances and internal resistance of supercapacitors with gel electrolyte were better than or comparable to those with liquid electrolytes($KNO_3$, $Na_2SO_4$), indicating that gel electrolytes could replace liquid counterparts in CNT-based supercapacitors. Combined with gel electrolyte, spray deposition method could provide low cost and easily scalable process for high performance supercapacitors using CNT films on ITO for applications in display devices.

  • PDF

Sol-gel Derived Nano-glass for Silicon Solar Cell Metallization (솔-젤법에 의해 제조된 실리콘 태양전지 전극형성용 나노 글래스)

  • Kang, Seong Gu;Lee, Chang Wan;Chung, Yoon Jang;Kim, Chang-Gyoun;Kim, Seongtak;Kim, Donghwan;Lee, Young Kuk
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.173-176
    • /
    • 2014
  • We have investigated the seed layer formation of front side contact using the inkjet printing process. Conductive silver ink was printed on textured Si wafers with 80 nm thick $SiN_x$ anti reflection coating (ARC) layers and thickened by light induced plating (LIP). The inkjet printable sliver inks were specifically formulated for inkjet printing on these substrates. Also, a novel method to prepare nano-sized glass frits by the sol-gel process with particle sizes around 5 nm is presented. Furthermore, dispersion stability of the formulated ink was measured using a Turbiscan. By implementing these glass frits, it was found that a continuous and uniform seed layer with a line width of $40{\mu}m$ could be formed by a inkjet printing process. We also investigated the contact resistance between the front contact and emitter using the transfer length model (TLM). On an emitter with the sheet resistance of $60{\Omega}/sq$, a specific contact resistance (${\rho}_c$) below $10m{\Omega}{\cdot}cm^2$ could be achieved at a peak firing temperature around $700^{\circ}C$. In addition, the correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy (SEM). We found that the added glass particles act as a very effective fire through agent, and Ag crystallites are formed along the interface glass layer.

Characteristic Evaluation of Impact Absorption Materials for the Development of Fall Impact Protective Pants (낙상 보호 팬츠개발을 위한 충격흡수 소재특성 평가)

  • Park, Jung Hyun;Lee, Jin Suk;Lee, Jeong Ran
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.40 no.3
    • /
    • pp.495-505
    • /
    • 2016
  • This study explores and selects an appropriate material that considers light and soft physical properties as well as activity for impact absorption pads that can be used to develop practical impact protective clothes worn during daily life by the elderly to reduce the impact of falls. Physical properties, impact absorption performance, and compression characteristics were evaluated on 5 types of foam, 2 types of 3D spacer fabric, and 3 types of polymer gel to select a material appropriate for the pad to be inserted into impact protective clothes. The evaluation of the physical properties showed that 3D spacer fabrics had lower density compared to other materials and polymer gels had the highest density. The elongation percentage was higher in foams than 3D spacer fabrics and EPDM foam had the highest elongation percentage. The impact absorption performance of honeycomb polymer gel was better than foams and 3D spacer fabrics. As a result of looking into compression energy and compression characteristics of materials, 'CR foam A' was found to absorb the largest amount of compression energy, 24.1%, among foams and polymer gels. A high energy absorption rate of 50.0% (or above) was indicated by 3D spacer fabrics; however, foams and polymer gels showed a progressive deformation of energy compression / recovery curve with 3D spacer fabrics that showed drastic deformation. Based on characteristics of materials, 'CR foam C' and EPDM with relatively high absorption performance can be used as protective pad materials among foams. Among polymer gels, 2 open-type polymer gels that have relatively low impact protective performance but a relatively lighter weight on human body (compared to closed-type) are considered appropriate protective pad materials.

Syntheses and Swelling Behaviors of Poly(n-isopropylacrylamide-co-acrylonitrile) Hydrogels (Poly(N-isopropylacrylamide-co-acrylonitrile) 수화젤의 합성과 팽윤거동)

  • Piao, Zhe Fan;Ham, Myong-Jo;Kim, Young-Ho
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.349-355
    • /
    • 2007
  • Poly(N-isopropylacrylamide-co-acrylonitrile) [P(NIPAAm-co-AN)] copolymers with AN content of up to 10 mol% and their hydrogels were synthesized using water as a reaction medium, and the effects of AN unit incorporation on the critical gel transition temperature(CGTT) and swelling behaviors of the hydrogels were investigated. The CGTT of the copolymer hydrogel was $30{\sim}32\;^{\circ}C$, decreasing with increasing AN content. Below CGTT, swelling rate and equilibrium swelling ratio of the copolymer hydrogel decreased with increasing AN content. On the other hand, it exhibited faster deswelling and lower equilibrium deswelling ratio with increasing AN content above CGTT.

Preparation and electrochemical property of $LiMn_2O_4$cathode active material by Sol-Gel method using water as solvent (물을 용매로 이용한 Sol-Ge1법에 의한 $LiMn_2O_4$ 정극 활물질의 제조와 전기화학적 특성)

  • 정인성;구할본;박계춘
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.175-178
    • /
    • 1998
  • LiMn$_2$O$_4$-based spinels has been studied extensively as positive electrode materials for rechargeable lithium and lithium ion batteries. We describe here that LiMn$_2$O$_4$ cathode active materials is preparated by sol-gel process using water as solvent, which often yields inorganic oxides of excellent phase purity and well-controlled stoichiometry. Using this process, it has been possible to synthesize phase-pure crystalline spinel LiMn$_2$O$_4$ by calcining the appropriate precursors in air at 80$0^{\circ}C$ for several hours. The influence of different time have also been explored. LiMn$_2$O$_4$ preparated in the present study exhibit the single phase of cubic and active reaction at 400 ~ $600^{\circ}C$. Electrochemical studies show that the this method- synthesized materials appear to present reversible oxidation and reduction reactions at 3.0V ~ 4.5V and cycle stability during 50 cycle.

  • PDF

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk
    • Korean Journal of Materials Research
    • /
    • v.29 no.12
    • /
    • pp.764-773
    • /
    • 2019
  • The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Properties of $Sr_{0.8}Bi_{2.3}{(Ta_{1-x}Nb_{x})}_{2}O_{9+{\alpha}}$ Thin Films

  • Park, Sang-Jun;Jang, Gun-Eik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.1 no.1
    • /
    • pp.22-25
    • /
    • 2000
  • Polycrystalline SBTN layered ferroelectric thin film with various Nb mole ratios were prepared by sol-gel method Pt/ $SiO_2$/Si (100) substrates. The films were annealed at different temperature and characterized in terms of phase and microstructure. The films were crystallized with a high (105) diffraction intensity and had rodike structure, SBTN films fired at 800$^{circ}C$ revealed standard hysteresis loops with no fatigue for up to 10$^{10}$ cycles. At an applied voltage of 5V the dielectric constant($varepsilon$) , dissipation factor (tan $delta$), remanent polarization(ZPr) and coercive field(Ec) of typical S $r_{0.8}$B $i_{2.3}$(T $a_{1-x}$ N $b_{x}$) $O_{9+}$$alpha$/ thin film(x=0.1) prepared on Pt/ $SiO_2$/Si (100) were about 277.7, 0.042, 3.74$mu$C/$textrm{cm}^2$, and 24.8kv/cm respectively.ly.y. respectively.ly.y.y..

  • PDF

Strengthening of C/C Composites through Ceramer Matrix

  • Dhakate, S.R.;Mathur, R.B.;Dhami, T.L.
    • Carbon letters
    • /
    • v.5 no.4
    • /
    • pp.159-163
    • /
    • 2004
  • The polymer-ceramic hybrid, known as 'ceramer', was synthesized by a sol-gel process by incorporating different amount of alkoxide as source of silicon in resorcinol-formaldehyde in presence of basic catalyst to get different percentage of silicon in ultimate carbonized composites. FTIR of the ceramer confirms that it is a network of Si-O-Si, Si-O-$CH_2$ and Si-OH type groups linked with benzene ring. Different amount of silicon in the ceramer exhibits varying temperature of thermal stability and lower coefficient of thermal expansion as compared to pure resorcinol-formaldehyde resin. The lower value of CTE in ceramer is due to existence of silica and resorcinol -formaldehyde in co-continuous phase. Unidirectional composites prepared with ceramer matrix and high-strength carbon fibers show lower value of flexural strength at polymer stage as compared to those prepared with resorcinol-formaldehyde resin. However, after heat treatment to $1450^{\circ}C$, the ceramer matrix composites show large improvement in the mechanical properties, i.e. with 7% silicon in the ceramer, the flexural strength is enhanced by 100% and flexural modulus value by 40% as compared to that of pure resorcinol-formaldehyde resin matrix composites.

  • PDF