DOI QR코드

DOI QR Code

Effect of the Calcination Temperature and Li(I) Doping on Ethanol Sensing Properties in p-Type CuO Thin Films

  • Choi, Yun-Hyuk (School of Advanced Materials and Chemical Engineering, Daegu Catholic University)
  • Received : 2019.11.07
  • Accepted : 2019.12.09
  • Published : 2019.12.27

Abstract

The gas response characteristic toward C2H5OH has been demonstrated in terms of copper-vacancy concentration, hole density, and microstructural factors for undoped/Li(I)-doped CuO thin films prepared by sol-gel method. For the films, both concentrations of intrinsic copper vacancies and electronic holes decrease with increasing calcination temperature from 400 to 500 to 600 ℃. Li(I) doping into CuO leads to the reduction of copper-vacancy concentration and the enhancement of hole density. The increase of calcination temperature or Li(I) doping concentration in the film increases both optical band gap energy and Cu2p binding energy, which are characterized by UV-vis-NIR and X-ray photoelectron spectroscopy, respectively. The overall hole density of the film is determined by the offset effect of intrinsic and extrinsic hole densities, which depend on the calcination temperature and the Li(I) doping amount, respectively. The apparent resistance of the film is determined by the concentration of the structural defects such as copper vacancies, Li(I) dopants, and grain boundaries, as well as by the hole density. As a result, it is found that the gas response value of the film sensor is directly proportional to the apparent sensor resistance.

Keywords

References

  1. X. Zhou, S. Lee, Z. Xu and J. Yoon, Chem. Rev., 115, 7944 (2015). https://doi.org/10.1021/cr500567r
  2. M. Righettoni, A. Amann and S. E. Pratsinis, Mater. Today, 18, 163 (2015). https://doi.org/10.1016/j.mattod.2014.08.017
  3. N. Barsan, D. Koziej and U. Weimar, Sens. Actuators B, 121, 18 (2007). https://doi.org/10.1016/j.snb.2006.09.047
  4. Y.-H. Choi, D.-H. Kim, S.-H. Hong, Sens. Actuators B, 243, 262 (2017). https://doi.org/10.1016/j.snb.2016.11.151
  5. I. A. Alagdal and A. R. West, J. Mater. Chem. C, 4, 4770 (2016). https://doi.org/10.1039/C6TC01007E
  6. M. M. Natile, A. Ponzoni, I. Concina and A. Glisenti, Chem. Mater., 26, 1505 (2014). https://doi.org/10.1021/cm4018858
  7. J.-H. Lee, Sens. Actuators B, 140, 319 (2009). https://doi.org/10.1016/j.snb.2009.04.026
  8. G. Korotcenkov, Mater. Sci. Eng. B, 139, 1 (2007). https://doi.org/10.1016/j.mseb.2007.01.044
  9. M. Batzill and U. Diebold, Prog. Surf. Sci., 79, 47 (2005). https://doi.org/10.1016/j.progsurf.2005.09.002
  10. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee and S.-H. Hong, Appl. Phys. Lett., 93, 263103 (2008). https://doi.org/10.1063/1.3046726
  11. S. Maeng, S.-W. Kim, D.-H. Lee, S.-E. Moon, K.-C. Kim and A. Maiti, ACS Appl. Mater. Interfaces, 6, 357 (2014). https://doi.org/10.1021/am404397f
  12. B. Tong, Z. Deng, B. Xu, G. Meng, J. Shao, H. Liu, T. Dai, X. Shan, W. Dong, S. Wang, S. Zhou, R. Tao and X. Fang, ACS Appl. Mater. Interfaces, 10, 34727 (2018). https://doi.org/10.1021/acsami.8b10485
  13. Y.-H. Choi, D.-H. Kim, S.-H. Hong and K. S. Hong, Sens. Actuators B, 178, 395 (2013). https://doi.org/10.1016/j.snb.2012.12.096
  14. Y.-H. Choi, D.-H. Kim and S.-H. Hong, ACS Appl. Mater. Interfaces, 10, 14901 (2018). https://doi.org/10.1021/acsami.8b02439
  15. A. Cruccolini, R. Narducci and R. Palombari, Sens. Actuators B, 98, 227 (2004). https://doi.org/10.1016/j.snb.2003.10.012
  16. Y. K. Jeong and G. M. Choi, J. Phys. Chem. Solids, 57, 81 (1996). https://doi.org/10.1016/0022-3697(95)00130-1
  17. H.-J. Kim and J.-H. Lee, Sens. Actuators B, 192, 607 (2014). https://doi.org/10.1016/j.snb.2013.11.005
  18. X. G. Zheng, H. Yamada, D. J. Scanderbeg, M. B. Maple and C. N. Xu, Phys. Rev. B, 67, 214516 (2003). https://doi.org/10.1103/PhysRevB.67.214516
  19. S. Suda, S. Fujitsu, K. Koumoto and H. Yanagida, Jpn. J. Appl. Phys., 31, 2488 (1992). https://doi.org/10.1143/JJAP.31.2488
  20. N. Yoshida, T. Naito and H. Fujishiro, Jpn. J. Appl. Phys., 52, 031102 (1992).
  21. X. G. Zheng, H. Yamada, D. J. Scanderbeg, M. B. Maple and C. N. Xu, Phys. Rev. B, 67, 214516 (2003). https://doi.org/10.1103/PhysRevB.67.214516
  22. Y. Peng, Z. Zhang, T. V. Pham, Y. Zhao, P. Wu and J. Wang, J. Appl. Phys., 111, 103708 (2012). https://doi.org/10.1063/1.4719059
  23. E.A. Goldstein, T. M. Gur and R. E. Mitchell, Corros. Sci., 99, 53 (2015). https://doi.org/10.1016/j.corsci.2015.05.067
  24. Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. Mucklich and J. F. Pierson, J. Appl. Phys., 115, 073505 (2014). https://doi.org/10.1063/1.4865957
  25. E. Burstein, Phys. Rev., 93, 632 (1954). https://doi.org/10.1103/PhysRev.93.632
  26. T. S. Moss, Proc. Phys. Soc. (Lond.), B67, 775 (1954). https://doi.org/10.1088/0370-1301/67/10/306
  27. C. C. Chusuei, M. A. Brookshier and D. W. Goodman, Langmuir, 15, 2806 (1999). https://doi.org/10.1021/la9815446
  28. Y.-H. Choi, D.-H. Kim and S.-H. Hong, Sens. Actuators B, 268, 129 (2018). https://doi.org/10.1016/j.snb.2018.04.105
  29. National Institute of Standards and Technology (NIST), NIST X-ray Photoelectron Spectroscopy Database. From http://srdata.nist.gov/xps/, 2012, Retrieved September 1, 2019
  30. S. Kamimura, N. Murakami, T. Tsubota and T. Ohno, Appl. Catal. B, 174, 471 (2015). https://doi.org/10.1016/j.apcatb.2015.03.034
  31. C.-Y. Chiang, Y. Shin and S. Ehrman, J. Electrochem. Soc., 159, B227 (2012). https://doi.org/10.1149/2.104206jes
  32. A. Bejaoui, J. Guerin and K. Aguir, Sens. Actuators B, 181, 340 (2013). https://doi.org/10.1016/j.snb.2013.01.018