• Title/Summary/Keyword: gauge method

Search Result 638, Processing Time 0.029 seconds

A CLASSIFICATION OF THE SECOND ORDER PROJECTION METHODS TO SOLVE THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제22권4호
    • /
    • pp.645-658
    • /
    • 2014
  • Many projection methods have been progressively constructed to find more accurate and efficient solution of the Navier-Stokes equations. In this paper, we consider most recently constructed projection methods: the pressure correction method, the gauge method, the consistent splitting method, the Gauge-Uzawa method, and the stabilized Gauge-Uzawa method. Each method has different background and theoretical proof. We prove equivalentness of the pressure correction method and the stabilized Gauge-Uzawa method. Also we will obtain that the Gauge-Uzawa method is equivalent to the gauge method and the consistent splitting method. We gather theoretical results of them and conclude that the results are also valid on other equivalent methods.

OPTIMAL ERROR ESTIMATE FOR SEMI-DISCRETE GAUGE-UZAWA METHOD FOR THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • 대한수학회보
    • /
    • 제46권4호
    • /
    • pp.627-644
    • /
    • 2009
  • The gauge-Uzawa method which has been constructed in [11] is a projection type method to solve the evolution Navier-Stokes equations. The method overcomes many shortcomings of projection methods and displays superior numerical performance [11, 12, 15, 16]. However, we have obtained only suboptimal accuracy via the energy estimate in [11]. In this paper, we study semi-discrete gauge-Uzawa method to prove optimal accuracy via energy estimate. The main key in this proof is to construct the intermediate equation which is formed to gauge-Uzawa algorithm. We will estimate velocity errors via comparing with the intermediate equation and then evaluate pressure errors via subtracting gauge-Uzawa algorithm from Navier-Stokes equations.

Adaptive mass flow method 유압압하식 자동 두께제어 장치에 관한 연구 (A Study on the Hydraulic Automatic Gauge Control System of Adaptive Mass Flow Method)

  • 윤순현;김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.101-107
    • /
    • 1996
  • This test was performed on the hydraulic automatic gauge control(AGC) system of adaptive mass flow method. Fundamental purpose of this study are performance evaluation of this AGC system under the actual rolling condition. It was concluded that the response of AGC system depends on the dynamic characteristics of a reel motor or roll position. The test results are as follows : 1) The control method of reel motor current is better than than of the roll position as AGC system. 2) The more steel strip thickness of delivery side is thick, the larger the gauge deviation is large, and the more it is thin, the larger the gauge deviation rate is large. 3) Because the gauge deviation is large at acceleration and deceleration speed than steady speed, so AGC system is better to adopt over 50m/min. By applying this AGC system, not only the accurary in strip thickness were improved but also productivity was improved dramatically.

  • PDF

NUMERICAL PROPERTIES OF GAUGE METHOD FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권1호
    • /
    • pp.43-56
    • /
    • 2010
  • The representative numerical algorithms to solve the time dependent Navier-Stokes equations are projection type methods. Lots of projection schemes have been developed to find more accurate solutions. But most of projection methods [4, 11] suffer from inconsistency and requesting unknown datum. E and Liu in [5] constructed the gauge method which splits the velocity $u=a+{\nabla}{\phi}$ to make consistent and to replace requesting of the unknown values to known datum of non-physical variables a and ${\phi}$. The errors are evaluated in [9]. But gauge method is not still obvious to find out suitable combination of discrete finite element spaces and to compute boundary derivative of the gauge variable ${\phi}$. In this paper, we define 4 gauge algorithms via combining both 2 decomposition operators and 2 boundary conditions. And we derive variational derivative on boundary and analyze numerical results of 4 gauge algorithms in various discrete spaces combinations to search right discrete space relation.

Measurement of Heat Flux in Rocket Combustors Using Plug-Type Heat Flux Gauges

  • Kim, Min Seok;Yu, I Sang;Kim, Wan Chan;Shin, Dong Hae;Ko, Young Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.788-796
    • /
    • 2017
  • This paper proposes a new measurement method to improve the shortcomings of an existing integral method for measuring heat flux in plug-type heat flux gauges in the high-temperature and high-pressure environments of liquid-rocket combustors. Using the existing integral measurement method, the calculation of the surface area for the heat flux in the gauge exhibits error in relation to the actual surface area. To solve this problem, transient profiles obtained from ANSYS Fluent were used to calculate unsteady heat flux as it adjusted to the measured temperature. First, a heat flux gauge was designed and manufactured specifically for use in the high-temperature and high-pressure conditions that are similar to those of liquid rocket combustors. A calibration test was performed to prove the reliability of the manufactured gauge. Then, a combustion experiment was conducted, in which the gauge was used to measure unsteady heat flux in a liquid rocket combustor that used kerosene and liquid oxygen as propellants. Reasonable heat flux values were obtained using the gauge. Therefore, the proposed measurement method is considered to offer significant improvement over the existing integral method.

AN OVERVIEW OF BDF2 GAUGE-UZAWA METHODS FOR INCOMPRESSIBLE FLOWS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권3호
    • /
    • pp.233-251
    • /
    • 2011
  • The Gauge-Uzawa method [GUM] in [9] which is a projection type algorithm to solve evolution Navier-Stokes equations has many advantages and superior performance. But this method has been studied for backward Euler time discrete scheme which is the first order technique, because the classical second order GUM requests rather strong stability condition. Recently, the second order time discrete GUM was modified to be unconditionally stable and estimated errors in [12]. In this paper, we contemplate several GUMs which can be derived by the same manner within [12], and we dig out properties of them for both stability and accuracy. In addition, we evaluate an stability condition for the classical GUM to construct an adaptive GUM for time to make free from strong stability condition of the classical GUM.

Anchor 볼트 형태의 Strain Gauge 센서를 이용한 지게차 적재 중량 측정 시스템 (Forklift Weight Measurement System using Anchor Bolt Type Strain Gauge Sensor)

  • 한치문;임춘식;이성렬
    • 한국항행학회논문지
    • /
    • 제23권2호
    • /
    • pp.200-206
    • /
    • 2019
  • 산업현장에서의 지게차의 전복에 의한 안전사고 빈도가 매우 높은 편이다. 지게차 전복의 가장 큰 원인은 과적으로, 이를 방지하기 위해서 적재 중량을 측정해야 한다. 가장 보편적인 적재 중량 측정 방식은 로드셀(load cell)로 측정 오차가 적은 장점이 있지만 설치 단가가 비싸다는 점 때문에 산업현장에 쉽게 적용하지 못하고 있다. 본 연구는 로드 셀 방식의 대안으로 제시되었지만 측량 정밀도가 높지 않은 strain gauge 센싱 방식을 적용한 지게차 새로운 적재 중량 측정 시스템을 제안한다. 센서의 측량 정밀도와 내구성을 높이기 위해 4개의 센서가 각각 4개의 anchor bolt에 삽입되는 구조로 제작하였다. 제작된 anchor 볼트 형태의 strain gauge 센서를 지게차에 적용하여 측정한 결과 1%의 측정 오차를 얻을 수 있었다.

고로 용융물 레벨 변화 추정을 위한 디지털 필터 설계 (The Design of Filter for Hearth Liquid Level Estimation in Blast Furnace)

  • 조내수;한무호;권우현;최연호
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.75-81
    • /
    • 2012
  • Optimizing the tapping time of a blast furnace is important to a stable operation and life extension. To optimize the tapping time of the blast furnace, the location of Hearth Liquid Level should be recognized. There are several ways to measure the hearth liquid level in the blast furnace, such as Electromotive Force(EMF) measurement, pressure measurement by putting in nitrogen probe and manometry with strain gauge. In this paper, it will be discussed using strain gauge among the three methods. Conventional strain gauge must be revised periodically. Since, internal pressure, temperature of internal refractory material and wind pressure have effect on the strain gauge. However, static pressure value is required to compensate. To solve these problems, this paper suggests finding relationship between Hearth Liquid Level and strain gauge output, adding digital filter in strain gauge. Using the proposed method, it was possible to estimate the hearth liquid level and determine the appropriate tapping time. Usefulness of the proposed method through simulations and experimental results are confirmed.

In-situ 진공게이지 교정장치 개발 (Development of an Apparatus for In-situ Vacuum Gauge Calibration)

  • 홍승수;임인태;조문재;정원호
    • 한국진공학회지
    • /
    • 제15권6호
    • /
    • pp.605-611
    • /
    • 2006
  • 정적법(constant volume method)을 이용하여 $1Pa\sim100kPa$ 영역에서 진공게이지의 직접교정 (direct calibration) 장치를 개발하였다. 이 장치는 피 교정 게이지의 이동 없이 in-situ 상태에서 비교교정(comparison calibration)도 가능하다. 이 장치가 개발됨으로서 산업체 교정기관의 생산성을 높이고 개발도상국에 국가 진공표준과 교정기술을 보급할 수 있게 되었다.