• Title/Summary/Keyword: gate oxide thickness

Search Result 240, Processing Time 0.026 seconds

저온공정을 통한 Pt-silicide SB-MOSFET의 전기적 특성과 공정기술에 관한 연구

  • O, Jun-Seok;Jeong, Jong-Wan;Jo, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.36-36
    • /
    • 2009
  • In this work, we describe a method to fabricate the Pt-silicided SB-MOSFETs with a n-type Silicon-On-Insulator (SOI) substrate as an active layer and demonstrate their electrical and structural properties. The fabricated SB-MOSFETs have novel structure and metal gate without sidewall. The gate oxide with a thickness of 7 nm was deposited by sputtering. Also, this fabrication processes were carried out below $500^{\circ}C$. As a result, Subthreshold swing value and on/off ratio of Fabricated SB MOSFETs was 70 [mV/dec] and $10^8$.

  • PDF

Analysis of Doping Profile Dependent Threshold Voltage for DGMOSFET Using Gaussian Function

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.310-314
    • /
    • 2011
  • This paper has presented doping profile dependent threshold voltage for DGMOSFET using analytical transport model based on Gaussian function. Two dimensional analytical transport model has been derived from Poisson's equation for symmetrical Double Gate MOSFETs(DGMOSFETs). Threshold voltage roll-off is very important short channel effects(SCEs) for nano structures since it determines turn on/off of MOSFETs. Threshold voltage has to be constant with decrease of channel length, but it shows roll-off due to SCEs. This analytical transport model is used to obtain the dependence of threshold voltage on channel doping profile for DGMOSFET profiles. Also we have analyzed threshold voltage for structure of channel such as channel length and gate oxide thickness.

Design of Zero-Layer FTP Memory IP (PMIC용 Zero Layer FTP Memory IP 설계)

  • Ha, Yoongyu;Jin, Hongzhou;Ha, Panbong;Kim, Younghee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.6
    • /
    • pp.742-750
    • /
    • 2018
  • In this paper, in order to enable zero-layer FTP cell using only 5V MOS devices on the basis of $0.13{\mu}m$ BCD process, the tunnel oxide thickness is used as the gate oxide thickness of $125{\AA}$ of the 5V MOS device at 82A. The HDNW layer, which is the default in the BCD process, is used. Thus, the proposed zero layer FTP cell does not require the addition of tunnel oxide and DNW mask. Also, from the viewpoint of memory IP design, a single memory structure which is used only for trimming analog circuit of PMIC chip is used instead of the dual memory structure dividing into designer memory area and user memory area. The start-up circuit of the BGR (Bandgap Reference Voltage) generator circuit is designed to operate in the voltage range of 1.8V to 5.5V. On the other hand, when the 64-bit FTP memory IP is powered on, the internal read signal is designed to maintain the initial read data at 00H. The layout size of the 64-bit FTP IP designed using the $0.13-{\mu}m$ Magnachip process .is $485.21{\mu}m{\times}440.665{\mu}m$($=0.214mm^2$).

A Study on SONOS Non-volatile Semiconductor Memory Devices for a Low Voltage Flash Memory (저전압 플래시메모리를 위한 SONOS 비휘발성 반도체기억소자에 관한 연구)

  • 김병철;탁한호
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.269-275
    • /
    • 2003
  • Polysilicon-oxide-nitride-oxide-silicon(SONOS) transistors were fabricated by using 0.35${\mu}{\textrm}{m}$ complementary metal-oxide-semiconductor(CMOS) process technology to realize a low voltage programmable flash memory. The thickness of the tunnel oxide, the nitride, and the blocking oxide were 2.4nm, 4.0nm, and 2.5nm, respectively, and the cell area of the SONOS memory was 1.32$\mu$$m^2$. The SONOS device revealed a maximum memory window of 1.76V with a switching time of 50ms at 10V programming, as a result of the scaling effect of the nitride. In spite of scaling of nitride thickness, memory window of 0.5V was maintained at the end of 10 years, and the endurance level was at least 105 program/erase cycles. Over-erase, which was shown seriously in floating gate device, was not shown in SONOS device.

Study on the Structural Stability and Charge Trapping Properties of High-k HfO2 and HFO2/Al2O3/HfO2 Stacks (High-k HfO2와 HfO2/Al2O3/HfO2 적층막의 구조 안정성 및 전하 트랩핑 특성 연구)

  • Ahn, Young-Soo;Huh, Min-Young;Kang, Hae-Yoon;Sohn, Hyunchul
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.256-261
    • /
    • 2010
  • In this work, high-k dielectric stacks of $HfO_2$ and $HfO_2$/$Al_2O_3$/$HfO_2$ (HAH) were deposited on $SiO_2/Si$ substrates by atomic layer deposition as charge trapping layers in charge trapping devices. The structural stability and the charge trapping characteristics of such stacks were investigated using Metal-Alumina-Hafnia-Oxide-Silicon (MAHOS) structure. The surface roughness of $HfO_2$ was stable up to 11 nm with the insertion of 0.2 nm thick $Al_2O_3$. The effect of the thickness of the HAH stack and the thickness of intermediate $Al_2O_3$ on charge trapping characteristics were investigated for MAHOS structure under various gate bias pulse with duration of 100 ms. The threshold voltage shift after programming and erase showed that the memory window was increased with increasing bias on gate. However, the programming window was independent of the thickness of HAH charge trapping layers. When the thickness of $Al_2O_3$insertion increased from 0.2 nm to 1 nm, the erase window was decreased without change in the programming window.

Analysis of Flat-Band-Voltage Dependent Breakdown Voltage for 10 nm Double Gate MOSFET

  • Jung, Hakkee;Dimitrijev, Sima
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.43-47
    • /
    • 2018
  • The existing modeling of avalanche dominated breakdown in double gate MOSFETs (DGMOSFETs) is not relevant for 10 nm gate lengths, because the avalanche mechanism does not occur when the channel length approaches the carrier scattering length. This paper focuses on the punch through mechanism to analyze the breakdown characteristics in 10 nm DGMOSFETs. The analysis is based on an analytical model for the thermionic-emission and tunneling currents, which is based on two-dimensional distributions of the electric potential, obtained from the Poisson equation, and the Wentzel-Kramers-Brillouin (WKB) approximation for the tunneling probability. The analysis shows that corresponding flat-band-voltage for fixed threshold voltage has a significant impact on the breakdown voltage. To investigate ambiguousness of number of dopants in channel, we compared breakdown voltages of high doping and undoped DGMOSFET and show undoped DGMOSFET is more realistic due to simple flat-band-voltage shift. Given that the flat-band-voltage is a process dependent parameter, the new model can be used to quantify the impact of process-parameter fluctuations on the breakdown voltage.

Characterization and design guideline for neuron-MOSFET inverters (Neuron-MOSFET 인버터의 특성 분석 및 설계 가이드라인)

  • Kim, Sea-W.;Lee, Jae-K.;Park, Jong-T.;Jeong, Woon-D.
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.161-167
    • /
    • 1999
  • 3-input neuron-MOSFET inverters and 3-bit D/A converters using enhancement type device have been designed and fabricated by using standard 2-poly CMOS process. The voltage transfer curve and the noise margin of neuron-MOSFET inverters have been measured and characterized as the same method in normal CMOS inverters. From the theoretical calculation of the effects of coupling ratio on the voltage transfer curve and noise margin, we set up the design guideline for the gate oxide thickness and input gate layout in neuron-MOSFET inverters. BT using one of input gates as a control gate, we can design and fabricate the neuron-MOSFET D/A converter without offset voltage.

  • PDF

Metal work function dependent photoresponse of schottky barrier metal-oxide-field effect transistors(SB MOSFETs) (금속(Al, Cr, Ni)의 일함수를 고려한 쇼트키 장벽 트랜지스터의 전기-광학적 특성)

  • Jung, Ji-Chul;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.355-355
    • /
    • 2010
  • We studied the dependence of the performance of schottky barrier metal-oxide-field effect transistors(SB MOSFETs) on the work function of source/drain metals. A strong impact of the various work functions and the light wavelengths on the transistor characteristics is found and explained using experimental data. We used an insulator of a high thickness (100nm) and back gate issues in SOI substrate, subthreshold swing was measured to 300~400[mV/dec] comparing with a ideal subthreshold swing of 60[mV/dec]. Excellent characteristics of Al/Si was demonstrated higher on/off current ratios of ${\sim}10^7$ than others. In addition, extensive photoresponse analysis has been performed using halogen and deuterium light sources(200<$\lambda$<2000nm).

  • PDF

Subthreshold Current Model for Threshold Voltage Shift Analysis in Junctionless Cylindrical Surrounding Gate(CSG) MOSFET (무접합 원통형 게이트 MOSFET에서 문턱전압이동 분석을 위한 문턱전압이하 전류 모델)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.4
    • /
    • pp.789-794
    • /
    • 2017
  • Subthreshold current model is presented using analytical potential distribution of junctionless cylindrical surrounding-gate (CSG) MOSFET and threshold voltage shift is analyzed by this model. Junctionless CSG MOSFET is significantly outstanding for controllability of gate to carrier flow due to channel surrounded by gate. Poisson's equation is solved using parabolic potential distribution, and subthreshold current model is suggested by center potential distribution derived. Threshold voltage is defined as gate voltage corresponding to subthreshold current of $0.1{\mu}A$, and compared with result of two dimensional simulation. Since results between this model and 2D simulation are good agreement, threshold voltage shift is investigated for channel dimension and doping concentration of junctionless CSG MOSFET. As a result, threshold voltage shift increases for large channel radius and oxide thickness. It is resultingly shown that threshold voltage increases for the large difference of doping concentrations between source/drain and channel.

Design of DGMOSFET for Optimum Subthreshold Characteristics using MicroTec

  • Jung, Hak-Kee;Han, Ji-Hyeong
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.4
    • /
    • pp.449-452
    • /
    • 2010
  • We have analyzed channel doping and dimensions(channel length, width and thickness) for the optimum subthreshold characteristics of DG(Double Gate) MOSFET based on the model of MicroTec 4.0. Since the DGMOSFET is the candidate device to shrink short channel effects, the determination of design rule for DGMOSFET is very important to develop sub-100nm devices for high speed and low power consumption. As device size scaled down, the controllability of dimensions and oxide thickness is very low. We have analyzed the short channel effects for the variation of channel dimensions, and found the design conditions of DGMOSFET having the optimum subthreshold characteristics for digital applications.