• Title/Summary/Keyword: gate delay

Search Result 241, Processing Time 0.026 seconds

Timing Window Shifting by Gate Sizing for Crosstalk Avoidance (크로스톡 회피를 위한 게이트 사이징을 이용한 타이밍 윈도우 이동)

  • Zang, Na-Eun;Kim, Ju-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.119-126
    • /
    • 2007
  • This paper presents an efficient heuristic algorithm to avoid crosstalk which effects to delay of CMOS digital circuit by downsizing and upsizing of Gate. The proposed algorithm divide into two step, step1 performs downsizing of gate, step2 performs upsizing, so that avoid adjacent aggressor to critical path in series. The proposed algorithm has been verified on LGSynth91 benchmark circuits and Experimental results show an average 8.64% Crosstalk Avoidance effect. This result proved new potential of proposed algorithm.

A 512 Bit Mask Programmable ROM using PMOS Technology (PMOS 기술을 이용한 512 Bit Mask Programmable ROM의 설계 및 제작)

  • 신현종;김충기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.18 no.4
    • /
    • pp.34-42
    • /
    • 1981
  • A 512-bit Task Programmable ROM has been designed and fabricated using PMOS technology. The content of the memory was written through the gate pattern during the fabrication process, and was checked by displaying the output of the chip on an oscilloscope with 512(32$\times$16) matrix points. The operation of the chip was surcessful with operating voltage from -6V to -l2V, The power consumption and propagation delay time have been measured to be 3mW and 13 $\mu$sec, respectively at -6 Volt. The power consunption increased to 27mW and propagation delay time decreased to 3$\mu$sec at -12V. The output of the chip was capable of driving the input of a TTL gate directly and retained a high impedence state when the chip solect function disabled the output.

  • PDF

Impacts of Trapezoidal Fin of 20-nm Double-Gate FinFET on the Electrical Characteristics of Circuits

  • Ryu, Myunghwan;Kim, Youngmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.4
    • /
    • pp.462-470
    • /
    • 2015
  • In this study, we analyze the impacts of the trapezoidal fin shape of a double-gate FinFET on the electrical characteristics of circuits. The trapezoidal nature of a fin body is generated by varying the angle of the sidewall of the FinFET. A technology computer-aided-design (TCAD) simulation shows that the on-state current increases, and the capacitance becomes larger, as the bottom fin width increases. Several circuit performance metrics for both digital and analog circuits, such as the fan-out 4 (FO4) delay, ring oscillator (RO) frequency, and cut-off frequency, are evaluated with mixed-mode simulations using the 3D TCAD tool. The trapezoidal nature of the FinFET results in different effects on the driving current and gate capacitance. As a result, the propagation delay of an inverter decreases as the angle increases because of the higher on-current, and the FO4 speed and RO frequency increase as the angle increases but decrease for wider angles because of the higher impact on the capacitance rather than the driving strength. Finally, the simulation reveals that the trapezoidal angle range from $10^{\circ}$ to $20^{\circ}$ is a good tradeoff between larger on-current and higher capacitance for an optimum trapezoidal FinFET shape.

Design of a Parallel Multiplier for Irreducible Polynomials with All Non-zero Coefficients over GF($p^m$) (GF($p^m$)상에서 모든 항의 계수가 0이 아닌 기약다항식에 대한 병렬 승산기의 설계)

  • Park, Seung-Yong;Hwang, Jong-Hak;Kim, Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.4
    • /
    • pp.36-42
    • /
    • 2002
  • In this paper, we proposed a multiplicative algorithm for two polynomials with all non-zero coefficients over finite field GF($P^m$). Using the proposed multiplicative algorithm, we constructed the multiplier of modular architecture with parallel in-output. The proposed multiplier is composed of $(m+1)^2$ identical cells, each cell consists of one mod(p) additional gate and one mod(p) multiplicative gate. Proposed multiplier need one mod(p) multiplicative gate delay time and m mod(p) additional gate delay time not clock. Also, our architecture is regular and possesses the property of modularity, therefore well-suited for VLSI implementation.

Design of Integrated a-Si:H Gate Driver Circuit with Low Noise for Mobile TFT-LCD

  • Lee, Yong-Hui;Park, Yong-Ju;Kwag, Jin-Oh;Kim, Hyung-Guel;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.822-824
    • /
    • 2007
  • This paper investigated a gate driver circuit with amorphous silicon for mobile TFT-LCD. In the conventional circuit, the fluctuation of the off-state voltage causes the fluctuation of gate line voltages in the panel and then image quality becomes worse. Newly designed gate driver circuit with dynamic switching inverter and carry out signal reduce the fluctuation of the off-state voltage because dynamic switching inverter is holding the off-state voltage and the delay of carry signal is reduced. The simulation results show that the proposed a-Si:H gate driver has low noise and high stability compared with the conventional one.

  • PDF

Effects of Resistivity of Gate Line Material on TFT-LCD Pixel Operations (게이트 라인 물질의 저항률이 TFT-LCD 화소의 동작에 미치는 영향)

  • 이영삼;최종선
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.321-324
    • /
    • 1998
  • Pixel-Design Array Simulation Tool(PDAST) was used to profoundly the gate signal distortion and pixel changing capability, which are the most critical limiting factors for high-quality TFT-LCDs. Since PDAST can simulate the gate, data and pixel voltages of a certain pixel on TFT array at any time and at any location on an array, the effect of the resistivity of gate line material on the pixel operations can be effectively analyzed. The gate signal delay, pixel charging ratio, level-shift of the pixel voltage were simulated with varying the resis5tivity of the gate line material. The information obtained from this study could be utilized to design the larger area and finer image quality panel.

  • PDF

Device and Circuit Level Performance Comparison of Tunnel FET Architectures and Impact of Heterogeneous Gate Dielectric

  • Narang, Rakhi;Saxena, Manoj;Gupta, R.S.;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.224-236
    • /
    • 2013
  • This work presents a comparative study of four Double Gate tunnel FET (DG-TFET) architectures: conventional p-i-n DG-TFET, p-n-p-n DG-TFET, a gate dielectric engineered Heterogate (HG) p-i-n DG-TFET and a new device architecture with the merits of both Hetero Gate and p-n-p-n, i.e. HG p-n-p-n DG-TFET. It has been shown that, the problem of high gate capacitance along with low ON current for a p-i-n TFET, which severely hampers the circuit performance of TFET can be overcome by using a p-n-p-n TFET with a dielectric engineered Hetero-gate architecture (i.e. HG p-n-p-n). P-n-p-n architecture improves the ON current and the heterogeneous dielectric helps in reducing the gate capacitance and suppressing the ambipolar behavior. Moreover, the HG architecture does not degrade the output characteristics, unlike the gate drain underlap architecture, and effectively reduces the gate capacitance.

Delay Time Modeling for ED MOS Logic LSI and Multiple Delay Logic Simulator (ED MOS 논리 LSI 의 지연시간 모델링과 디자인 논리 시뮬레이터)

  • 김경호;전영준;이창우;박송배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.4
    • /
    • pp.701-707
    • /
    • 1987
  • This paper is concerned with an accurate delay time modling of the ED MOS logic gates and its application to the multiple delay logic simulator. The proposed delay model of the ED MOS logic gate takes account of the effects of not only the loading conditions but also the slope of the input waveform. Defining delay as the time spent by the current imbalance of the active inverter to charge and discharge the output load, with respect to physical reference levels, rise and fall model delay times are obtained in an explicit formulation, using optimally weighted imbalance currents at the end points of the voltage transition. A logic simulator which uses multiple rise/fall delays based on the model as decribed in the above has been developed. The new delay model and timing verification method are evaluated with repect to delay accuracy and execution time.

  • PDF

Implementation of a Fast Current Controller using FPGA (FPGA를 이용한 고속 전류 제어기의 구현)

  • Jung, Eun-Soo;Lee, Hak-Jun;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.339-345
    • /
    • 2007
  • This paper presents a design of an FPGA (Field Programmable Gate Array) -based currentcontroller. Using the nature of the high computational capability of FPGA, the digital delay due to the algorithm execution can be reduced. The control performance can be better than the conventional DSP (Digital Signal Processor)-based current controller. Moreover, this method does not need any delay compensation algorithm because the digital delay is physically diminished. Therefore, the bandwidth of the current controller can be extended by this method. The feasibility of this method is verified by several experimental results under the various conditions.

A Study on the Exclusive-OR-based Technology Mapping Method in FPGA

  • Ko, Seok-Bum
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.11A
    • /
    • pp.936-944
    • /
    • 2003
  • In this paper, we propose an AND/XOR-based technology mapping method for field programmable gate arrays (FPGAs). Due to the fixed size of the programmable blocks in an FPGA, decomposing a circuit into sub-circuits with appropriate number of inputs can achieve excellent implementation efficiency. Specifically, the proposed technology mapping method is based on Davio expansion theorem to decompose a given Boolean circuit. The AND/XOR nature of the proposed method allows it to operate on XOR intensive circuits, such as error detecting/correcting, data encryption/decryption, and arithmetic circuits, efficiently. We conduct experiments using MCNC benchmark circuits. When using the proposed approach, the number of CLBs (configurable logic blocks) is reduced by 67.6% (compared to speed-optimized results) and 57.7% (compared to area-optimized results), total equivalent gate counts are reduced by 65.5 %, maximum combinational path delay is reduced by 56.7 %, and maximum net delay is reduced by 80.5 % compared to conventional methods.