• 제목/요약/키워드: gas-solid two-phase flow

검색결과 39건 처리시간 0.024초

An Analytical Study on the Gas-Solid Two Phase Flows

  • ;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.356-363
    • /
    • 2012
  • This paper addresses an analytical study on the gas-solid two phase flows in a nozzle. The primary purpose is to get recognition into the gas-solid suspension flows and to investigate the particle motion and its influence on the gas flow field. The present study is the primal step to comprehend the gas-solid suspension flow in the convergent-divergent nozzle. This paper try to made a development of an analytical model to study the back pressure ratio, particles loading and the particle diameter effect on gas-solid suspension flow. Mathematical model of gas-solid two phase flow was developed based on the single phase flow models to solve the quasi-one-dimensional mass, momentum equations to calculate the steady pressure field. The influence of particles loading and particle diameter is analyzed. The results obtained show that the suspension flow of smaller diameter particles has almost same trend as that of single phase flow using ideal gas as working fluid. And the presence of particles will weaken the strength of the shock wave; the bigger particle will have larger slip velocity with gas flow. The thrust coefficient is found to be higher for larger particles/gas loading or back pressure ratio, but it also depends on the ambient pressure.

  • PDF

固體粉末이 浮上된 二相亂流 管流動의 熱傳達에 관한 硏究 (Study on the two phase turbulent heat transfer of gas-solid supension flow in pipes)

  • 김재웅;김봉기;최영돈
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.528-537
    • /
    • 1989
  • The objective of this paper is to investigate effects of the specific heat and the diameter of suspending particles on the heat transfer coefficient of two phase turbulent flow with suspension of solid particles in a circular tube with constant heat flux. Heat transfer coefficients of two phase turbulent flow in pipe with suspension of graphite powder were measured with variations of particle sizes and solid-gas loading ratio. Measured data were compared with predictions by numerical analysis in which the turbulece models are closed on the first order level. Results show that heat transfer coefficient increases with increasing the solid-gas loading ratio and the specific heat of suspending material, however, it decreases as the average diameter of particles decreases below $24{\mu}m$.

가스와 입자가 혼합된 2상 유동에 관한 수치해석적 연구 (Numerical Simulation of Two-Phase Flow for Gas-Solid Particles)

  • 정훈;최종욱;박찬국
    • 한국전산유체공학회지
    • /
    • 제6권4호
    • /
    • pp.8-14
    • /
    • 2001
  • The phenomena of two-phase suspension flows appear widely in nature and industrial processes. Hence, it is of great importance to understand the mechanism of the gas-solid two-phase flows. In the present study, the numerical simulation has been approached by utilizing the Eulerian-Lagrangian methodology for describing the characteristics of the fluid and particulate phases in a vertical pipe and a 90°square-sectioned bend. The continuous phase(gas phase) is described by the Eulerian formulation and a κ-ε turbulence model is employed to find mean and turbulent properties of the gas phase. The particle properties(velocity and trajectory) are then described by a Lagrangian approach and computed using the mean velocity and turbulent fluctuating velocity of the gas phase. The predictions are compared with measurements by laser-Doppler velocimeter for the validation. As a result, the calculated results show good agreements.

  • PDF

Development of Light Transmission Fluctuation for Particle Measurement in Solid-Gas Two Phase Flows

  • YANG, Bin;WANG, Zhan-ping;HE, Yuan;CAI, Xiao-Shu
    • 한국입자에어로졸학회지
    • /
    • 제12권1호
    • /
    • pp.21-26
    • /
    • 2016
  • In order to realize In-line and convenient measurement for solid-gas two phase flows, Light Transmission Fluctuation (LTF) based on the random variation of transmitted light intensity, light scattering theory and cross-correlation method was presented for online measurement of particle size, concentration and velocity. The statistical relationship among transmitted light intensity, particle size and particle number in measurement zone was described by Beer-Lambert Law. Accordingly, the particle size and concentration were determined from the fluctuation signal of transmitted light intensity. Simultaneously, the particle velocity was calculated by cross-correlation analysis of two neighboring light beams. By considering the influence of concentration variation in industrial applications, the improved algorithm based on spectral analysis of transmitted light intensity was proposed to improve measurement accuracy and stability. Therefore, the online measurement system based on LTF was developed and applied to measure pulverized coal in power station and raw material in cement plant. The particle size, concentration and velocity of powder were monitored in real-time. It can provide important references for optimal control, energy saving and emission reduction of energy-intensive industries.

固體分末 이 浮上된 二相亂流 管流動 의 熱傳達 解析 (Analysis of Turbulent Heat Transfer of Gas-Solid Suspension Flow In Pipes)

  • 김재웅;최영돈
    • 대한기계학회논문집
    • /
    • 제6권4호
    • /
    • pp.331-340
    • /
    • 1982
  • Numerical analysis is made on the turbulent heat transfer with suspension of solid particles in circular tube with constant heat flux. The mean motion of suspending particles in mixture is treated as the secondary gas flow with virtual density and viscosity. Our modeling of turbulent transport phenomena of suspension flow is based on this assumption and conventional mixing length theory. This paper gives the evidence that the mixing length models can be extended to close the governing equations for two phase turbulent flow with solid boundary at a first order level. Results on Nusselt numbers obtained by analytical treatments are compared with available experimental data and discussed. They suggest that the most important parameters of two phase turbulent heat transfer phenomena are relative particle diameter to pipe diameter, gas-solid loading ratio, and specific heat of suspending material.

바이오매스 급속열분해 반응기내 열전달 특성 (HEAT TRANSFER CHARACTERISTICS IN A FAST PYROLYSIS REACTOR FOR BIOMASS)

  • 최항석
    • 한국전산유체공학회지
    • /
    • 제15권1호
    • /
    • pp.9-16
    • /
    • 2010
  • The characteristics of flow and heat transfer in a bubbling fluidized bed are investigated by means of computational fluid dynamics (CFD). To simulate two-phase flow for the gas and solid flows, Eulerian-Eulerian approach is applied. Attention is paid for a heat transfer from the wall to fluidized bed by bubbling motion of the flow. From the result, it is confirmed that heat transfer is promoted by chaotic bubbling motion of the flow by enhancement of mixing among solid particles. In particular, the vortical flow motion around gas bubble plays an important role for the mixing and consequent heat transfer. Discussion is made for the time and space averaged Nusselt number which shows peculiar characteristics corresponding to different flow regimes.

다공성 매질 내에서 메탄 하이드레이트의 분해에 의한 2 상 유동 해석 (Simulation of Two Phase Flow in Porous Media After Disso of Methane Hydrates)

  • 장동근;김남진;이재용;김종보
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.241-246
    • /
    • 2000
  • Gas hydrates are solid solutions when water molecules are linked through hydrogen bondin create host lattice cavities that can enclose a large variety of guest gas molecules. The natural hydrate crystal may exist at low temperature above the normal freezing point of water and pressure greater than about 30 bars. A lot of quantities of natural gas hydrates exists in the ear many production schemes are being studied. In the present investigation, depressurization method considered to predict the production of gas and the simulation of the two phase flow - gas and - in porous media is being carried out. The simulation show about the fluid flow in porous have a variety of applications in industry. Results provide the appearance of gas and water prod the pressure profile, the saturation of gas/ water/ hydrates profiles and the location of the pl front.

  • PDF

열복사에 의한 수직연료면의 점화현상 해석 (Ignition of a Vertically Positioned Fuel Plate by Thermal Radiation)

  • 한조영;백승욱
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2353-2364
    • /
    • 1995
  • The ignition phenomena of a solid fuel plate of polymethyl-methacrylate(PMMA), which is vertically positioned and exposed to a thermal radiation source, is numerically studied here. A two-dimensional transient model includes such various aspects as thermal decomposition of PMMA, gas phase radiation absorption, gas phase chemical reaction and air entrainment by natural convection. Whereas the previous studies considers the problem approximately in a one-dimensional form by neglecting the natural convection, the present model takes account of the two-dimensional effect of radiation and air entrainment. The inert heating of the solid fuel is also taken into consideration. Radiative heat transfer is incorporated by th Discrete Ordinates Method(DOM) with the absorption coefficient evaluated using gas species concentration. The thermal history of the solid fuel plate shows a good agreement compared with experimental results. Despite of induced natural convective flow that induces heat loss from the fuel surface, the locally absorbed radiant energy, which is converted to the internal energy, is found to play an important role in the onset of gas phase ignition. The ignition is considered to occur when the rate of variation of gas phase reaction rate reaches its maximum value. Once the ignition takes place, the flame propagates downward.

이상난류제트 유동에서 고체입자 난류확산의 수치모델에 관한 연구 (Study on the numerical models of turbulent dispersion of solid particles in a two-phase turbulent jet flow)

  • 양선규;최영돈
    • 대한기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.1-18
    • /
    • 1987
  • 본 연구에서는 입자가 부상된 이상난류제트유동에 Einstein의 확산모형, Pes- kin모형, 3-방정식 모형, 4-방정식 모형, 대수응력모형 등을 적용하여 해석하고 각 모 형들의 결과를 비교 분석하였다. 이상난류유동의 수치해석에서 공기는 제1유체유동 으로 하고 첨가되는 고체분말의 흐름은 밀도(.rho.$_{p}$), 층류동점성계수(.nu.$_{p}$), 과점성계수(.nu.$_{pt}$ )를 갖는 제2유체유동의 흐름으로 간주하였다.