• Title/Summary/Keyword: gas accidents

Search Result 528, Processing Time 0.023 seconds

Theoretical modelling of post - buckling contact interaction of a drill string with inclined bore-hole surface

  • Gulyayev, V.I.;Andrusenko, E.N.;Shlyun, N.V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.4
    • /
    • pp.427-448
    • /
    • 2014
  • At present, the time of easy oil and gas is over. Now, the largest part of fossil fuels is concentrated in the deepest levels of tectonic structures and in the sea shelves. One of the most cumbersome operations of their extraction is the bore-hole drilling. In connection with austere tectonic and climate conditions, their drivage every so often is associated with great and diversified technological difficulties causing emergencies on frequent occasions. As a rule, they are linked with drill string accidents. A key role in prediction of these situations should play methods of theoretical modelling. For this reason, there is a growing need for development and implementation of new numerical methods for computer simulation of critical and post-critical behavior of drill strings (DSs). In this paper, the processes of non-linear deforming of a DS in cylindrical cavity of a deep bore-hole are considered. On the basis of the theory of curvilinear flexible rods, non-linear constitutive differential equations are deduced. The effects of the longitudinal non-uniform preloading, action of torque and interaction between the DS and the bore-hole surface are taken into account. Owing to the use of curvilinear coordinates in the constraining cylindrical surface and a specially chosen concomitant reference frame, it became possible to separate the desired variables and to reduce the total order of the equation system. To solve it, the method of continuation the solution by parameter and the transfer matrix technique are applied. As a result of the completed numerical analysis, the critical states of the DS loading in the cylindrical channels of inclined bore-holes are found. It is shown that the modes of the post-critical deforming of the DS are associated with its irregular spiral curving prevailing in the zone of bottom-hole-assembly. The possibility of invariant state generation during post-critical deforming is established, condition of its bifurcation is formulated. It is shown that infinite variety of loads can correspond to one geometrical configuration of the DS. They differ each from other by contact force functions.

Verification of SPACE Code with MSGTR-PAFS Accident Experiment (증기발생기 전열관 다중파단-피동보조급수냉각계통 사고 실험 기반 안전해석코드 SPACE 검증)

  • Nam, Kyung Ho;Kim, Tae Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.4
    • /
    • pp.84-91
    • /
    • 2020
  • The Korean nuclear industry developed the SPACE (Safety and Performance Analysis Code for nuclear power plants) code and this code adpots two-phase flows, two-fluid, three-field models which are comprised of gas, continuous liquid and droplet fields and has a capability to simulate three-dimensional model. According to the revised law by the Nuclear Safety and Security Commission (NSSC) in Korea, the multiple failure accidents that must be considered for accident management plan of nuclear power plant was determined based on the lessons learned from the Fukushima accident. Generally, to improve the reliability of the calculation results of a safety analysis code, verification work for separate and integral effect experiments is required. In this reason, the goal of this work is to verify calculation capability of SPACE code for multiple failure accident. For this purpose, it was selected the experiment which was conducted to simulate a Multiple Steam Generator Tube Rupture(MSGTR) accident with Passive Auxiliary Feedwater System(PAFS) operation by Korea Atomic Energy Research Institute (KAERI) and focused that the comparison between the experiment results and code calculation results to verify the performance of the SPACE code. The MSGR accident has a unique feature of the penetration of the barrier between the Reactor Coolant System (RCS) and the secondary system resulting from multiple failure of steam generator U-tubes. The PAFS is one of the advanced safety features with passive cooling system to replace a conventional active auxiliary feedwater system. This system is passively capable of condensing steam generated in steam generator and feeding the condensed water to the steam generator by gravity. As the results of overall system transient response using SPACE code showed similar trends with the experimental results such as the system pressure, mass flow rate, and collapsed water level in component. In conclusion, it could be concluded that the SPACE code has sufficient capability to simulate a MSGTR accident.

Simplified GIS Diagnostic SYSTEM (간이형 상시 GIS 진단장치)

  • Jeong, J.K.;Choi, Y.J.;Kang, C.I.;Jang, H.K.;Gwak, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.05a
    • /
    • pp.74-77
    • /
    • 2006
  • This research is focused on the development of GIS Diagnostic SYSTEM to prevent accidents beforehand by inspecting the internal defects of GIS (Gas Insulated Switchgear) which is a main power-facility for substations. GIS Diagnostic SYSTEM is categorized as 'Real time on-line test type' and 'Portable test type' depending on the types of testing, it uses PD(partial discharge) which mostly incurs in GIS internal defects, to inspect. As of now, mostly foreign equipments are imported for use due to the lack of the technology localization, and these are installed and operated on only some parts of highly-graded GIS power-facilities such as in 76skv or 345kv for its being expensive. Furthermore, other than foreign equipments being costly, it also has a weak point of very long unavailability in case of Diagnostic system break-down while using, because it takes a comparatively long period of corrective maintenance precesses. We have localized to develop personal real-time multi -functional GIS Diagnostic system which can test on all GIS power-facility comprehensively and economically therefore overcome all these problems mentioned above, a market expansion is expected from the decrease of price and replacing the import equipments in the future. As the equipment was developed to be Personal for the simple ways of installing and utilizing, it can be operated without any complex cable installation like other existing GIS Diagnostic system requires, therefore also decrease the cost of cable installation.

  • PDF

Adverse Effects on Crops and Soils Following an Accidental Release of Hydrogen Fluoride and Hydrofluoric Acid

  • Kang, Dae-Won;Kim, Hyuck-Soo;Kunhikrishnan, Anitha;Kim, Da-In;Lee, Seul;Park, Sang-Won;Yoo, Ji-Hyock;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.651-654
    • /
    • 2016
  • A number of accidents relating to highly toxic hydrogen fluoride (HF) or hydrofluoric acid (HA) release have occurred over fast few decades in Korea. Thus, this study was conducted to investigate the fluoride (F) concentrations in paddy soil and brown rice from 2 different areas where the soils were exposed to HF and HA. In the first case, the HF leakage accident that occurred in 2012 affected the surrounding soils and crops and consequently, crops (rice) affected by HF were unavailable for forage even though F did not accumulate in the soil. For example, at the time of accident, F concentrations in brown rice samples were $33.0-1,395mg\;kg^{-1}$, while F concentrations in soil samples were $155-295mg\;kg^{-1}$ which were less than the Korean standard guideline values of $400mg\;kg^{-1}$. However, after a year, F concentrations in brown rice were observed below the detection limit ($1mg\;kg^{-1}$), although F concentrations in soils were similar with those in 2012. Also, large amounts of wastewater discharges containing HA occurred in 2013 and some agricultural soils exceeded the Korean standard guideline values for F ($400mg\;kg^{-1}$), but soil-plant F transfer was not observed. In conclusion, it was observed that soil to plant transfer of F is unlikely although HF and HA as gas or liquid form can cause direct damage to plants.

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.

Design and Implementation of Prototype Anti-disaster Remote Control Robot Model using Smart Phone (스마트폰을 이용한 방재용 원격 조정 로봇의 프로토 타입 모델 설계 및 구현)

  • Choi, Sung-Jai
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.221-227
    • /
    • 2014
  • This paper presented a design which was a minimized remote control robot. This remote control robot was created for preventing life damage from conflagrations, nuclear events and HF gas accidents. This robot's system based smart phone that had camera and GPS systems. When fire came out, The robot figured out that how big fire was, where the fire was started and various aspects of situations. And The robot broadcasted the informations to smart phone using mobile application and wi-fi camera. By doing these, the fire mans could more accurate and be easier to plan a strategy for saving life. The body of robot are 2 parts. One is a car and the other one is a remote controller. By the power, 1step to 10steps, of grabbing remote controller could change the car's speed to move. Also, The prototype robot was already confirmed its utility itself.

Design Concept of Hybrid SIT (복합안전주입탱크(Hybrid SIT) 설계개념)

  • Kwon, Tae-Soon;Euh, Dong-Jin;Kim, Ki-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.104-108
    • /
    • 2014
  • The recent Fukushima nuclear power plant accidents shows that the core make up at high RCS pressure condition is very important to prevent core melting. The core make up flow at high pressure condition should be driven by gravity force or passive forces because the AC-powered safety features are not available during a Station Black Out (SBO) accident. The reactor Coolant System (RCS) mass inventory is continuously decreased by releasing steam through the pressurizer safety valves after reactor trip during a SBO accident. The core will be melted down within 2~3 hours without core make up action by active or passive mode. In the new design concept of a Hybrid Safety Injection Tank (Hybrid SIT) both for low and high RCS pressure conditions, the low pressure nitrogen gas serves as a charging pressure for a LBLOCA injection mode, while the PZR high pressure steam provides an equalizing pressure for a high pressure injection mode such as a SBO accident. After the pressure equalizing process by battery driven initiation valve at a high pressure SBO condition, the Hybrid SIT injection water will be passively injected into the reactor downcomer by gravity head. The SBO simulation by MARS code show that the core makeup injection flow through the Hybrid SIT continued up to the SIT empty condition, and the core heatup is delayed as much.

Development and Ergonomic Evaluation of Spring and Autumn Working Clothes for Livestock Farming Workers

  • Kim, Insoo;Lee, Kyung-Suk;Seo, Min-Tea;Chae, Hye-Seon;Kim, Kyung-Su;Choi, Dong-Phil;Kim, Hyo-Cher
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.343-359
    • /
    • 2016
  • Objective:In this study, we designed working clothes for livestock farmers to wear in spring and autumn to improve their work efficiency, conducted a physiological test on their performance, and evaluated their comfort. Background: In recent years, livestock farming in Korea has expanded, yet farmers' safety and sanitation levels remain low in hazardous environments that include organic dust, toxic gas, and heat stress, as well as the risk of accidents. Furthermore, most livestock farmers wear ordinary or dust-resistant clothes that are unsuitable for rearing livestock and compromise their safety and health. Thus, it is important to design specialized working clothes for livestock farmers that are comfortable and that minimize their health and safety risks. Method: To this end, we examined the literature on livestock (poultry, swine, and cattle) farmers' safety and sanitation issues, designed appropriate working clothes, and tested them in terms of sensory feel, physiological response, and subjective comfort. Results: The respondents expressed satisfaction with the new working clothes. The results of a physiological test showed a decline in temperature and humidity inside the clothes, a lower pulse rate, and a lower oxygen intake compared to the measurements taken when famers wore their previous working clothes. This indicates a fall in heat stress and fatigue, which was mostly consistent with the results of the assessment of subjective comfort. Conclusion: The results of the analysis show an improvement in the comfort of the new working clothes compared to the dust-resistant clothes that are widely worn. Based on this study, the new working clothes need to be further tested and evaluated to improve the design. Application: This study is expected to contribute to designing better working clothes for livestock farmers.

Success Run Test for Reliability Demonstration of 1100℃ Gas Turbine Blades (1100℃급 가스터빈 동익의 무고장시험을 통한 HCF 신뢰성 평가)

  • Lee, Dooyoung;Goo, Jaeryang;Kim, Doosoo;Kim, Donghwan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.107-111
    • /
    • 2017
  • The reliability on high cycle fatigue damage mechanism for new blades manufactured by reverse-engineering is demonstrated by success-run test. Turbine blades always experience various dynamic loads in turbine operation, as well as being in resonance condition and forced by fluid-induced vibrations mostly during run-up/down, which may accumulate high cycle damage to the blades. The accidents caused by blade failure especially incur not only a lot of troubles to the machinery but also huge financial losses. Therefore it is necessary to verify the reliability of blades in advance for the safe use. The success run test for the reliability demonstration is designed and performed for the new blades using the technique known as resonant high cycle fatigue testing.

Development of Protection Techniques for Explosive Demolition of RC Pillar (철근콘크리트 기둥 발파해체를 위한 방호기술 연구)

  • Chang Ha Ryu;Byung Hee Choi;Yang Kyun Kim
    • Explosives and Blasting
    • /
    • v.20 no.4
    • /
    • pp.17-28
    • /
    • 2002
  • Safety concern is one of the most important parameters in the design of building demolition by explosive blasting, Accidents were sometimes reported due to the flying chips of fragmented materials In building demolition work in urban area. Laboratory experiments were performed to investigate the failure behavior of reinforced concrete pillars under blast loading and to develop an effective protection technique. Sixteen reinforced concrete pillars were constructed. The failure behavior and the flying chip velocities were observed by means of a high-speed camera. Protection scheme was designed and the effects of several protection materials were investigated. Two kinds of non-woven fabrics and wire net were tested as protection materials. The results showed that reinforcing bar was one of the important factors to determine specific charges, and that mesh size of wire net and tied-up method affected the protection of flying chips. Control of gas effects is also a key to the control of flying chips. It was recommended to use both wire net and non-woven fabrics as primary and secondary protection materials. Such protection scheme was successfully applied to the explosive demolition of apartment buildings.