• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.032 seconds

A New Design of Fuzzy Neural Networks Using Data Information (데이터 정보를 이용한 퍼지 뉴럴 네트워크의 새로운 설계)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.273-275
    • /
    • 2006
  • In this paper, we introduce a new design of fuzzy neural networks using input-output data information of target system. The proposed fuzzy neural networks is constructed by input-output data information and used the center of data distance by HCM clustering to obtain the characteristics of data. A membership function is defined by HCM clustering and is applied input-output dat included each rule to conclusion polynomial functions. We use triangular membership functions and simplified fuzzy inference, linear fuzzy inference, and modified quadratic fuzzy inference in conclusion. In the networks learning, back propagation algorithm of network is used to update the parameters of the network. The proposed model is evaluated with benchmark data.

  • PDF

A Study on Genetically Optimized Fuzzy Set-based Polynomial Neural Networks (진화이론을 이용한 최적화 Fuzzy Set-based Polynomial Neural Networks에 관한 연구)

  • Rho, Seok-Beom;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.346-348
    • /
    • 2004
  • In this rarer, we introduce a new Fuzzy Polynomial Neural Networks (FPNNs)-like structure whose neuron is based on the Fuzzy Set-based Fuzzy Inference System (FS-FIS) and is different from that of FPNNs based on the Fuzzy relation-based Fuzzy Inference System (FR-FIS) and discuss the ability of the new FPNNs-like structurenamed Fuzzy Set-based Polynomial Neural Networks (FSPNN). The premise parts of their fuzzy rules are not identical, while the consequent parts of the both Networks (such as FPNN and FSPNN) are identical. This difference results from the angle of a viewpoint of partition of input space of system. In other word, from a point of view of FS-FIS, the input variables are mutually independent under input space of system, while from a viewpoint of FR-FIS they are related each other. In considering the structures of FPNN-like networks such as FPNN and FSPNN, they are almost similar. Therefore they have the same shortcomings as well as the same virtues on structural side. The proposed design procedure for networks' architecture involves the selection of appropriate nodes with specific local characteristics such as the number of input variables, the order of the polynomial that is constant, linear, quadratic, or modified quadratic functions being viewed as the consequent part of fuzzy rules, and a collection of the specific subset of input variables. On the parameter optimization phase, we adopt Information Granulation (IG) based on HCM clustering algorithm and a standard least square method-based learning. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized FSPNN (gFSPNN), the model is experimented with using gas furnace process dataset.

  • PDF

Algorithm and Architecture of Hybrid Fuzzy Neural Networks (하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF

Relations among the multidimensional linear interpolation fuzzy reasoning , and neural networks

  • Om, Kyong-Sik;Kim, Hee-Chan;Byoung-Goo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.562-567
    • /
    • 1998
  • This paper examined the relations among the multidimensional linear interpolation(MDI) and fuzzy reasoning , and neural networks, and showed that an showed that an MDI is a special form of Tsukamoto's fuzzy reasoning and regularization networks in the perspective of fuzzy reasoning and neural networks, respectively. For this purposes, we proposed a special Tsukamoto's membership (STM) systemand triangular basis function (TBF) networks, Also we verified the condition when our proposed TBF becomes a well-known radial basis function (RBF).

  • PDF

The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

  • Park, Byoung-Jun;Park, Keon-Jun;Lee, Dong-Yoon;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.660-665
    • /
    • 2004
  • In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks (FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a numerical example.

Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application (퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, we propose the fuzzy neural networks based on fuzzy c-means clustering algorithm. Typically, the generation of fuzzy rules have the problem that the number of fuzzy rules exponentially increases when the dimension increases. To solve this problem, the fuzzy rules of the proposed networks are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the learning of fuzzy neural networks is realized by adjusting connections of the neurons, and it follows a back-propagation algorithm. The proposed networks are evaluated through the application to nonlinear process.

THE FUZZY CLUSTERING ALGORITHM AND SELF-ORGANIZING NEURAL NETWORKS TO IDENTIFY POTENTIALLY FAILING BANKS

  • Lee, Gi-Dong
    • 한국디지털정책학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.485-493
    • /
    • 2005
  • Using 1991 FDIC financial statement data, we develop fuzzy clusters of the data set. We also identify the distinctive characteristics of the fuzzy clustering algorithm and compare the closest hard-partitioning result of the fuzzy clustering algorithm with the outcomes of two self-organizing neural networks. When nine clusters are used, our analysis shows that the fuzzy clustering method distinctly groups failed and extreme performance banks from control (healthy) banks. The experimental results also show that the fuzzy clustering method and the self-organizing neural networks are promising tools in identifying potentially failing banks.

  • PDF

The Design of Optimized Type-2 Fuzzy Neural Networks and Its Application (최적 Type-2 퍼지신경회로망 설계와 응용)

  • Kim, Gil-Sung;Ahn, Ihn-Seok;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.8
    • /
    • pp.1615-1623
    • /
    • 2009
  • In order to develop reliable on-site partial discharge (PD) pattern recognition algorithm, we introduce Type-2 Fuzzy Neural Networks (T2FNNs) optimized by means of Particle Swarm Optimization(PSO). T2FNNs exploit Type-2 fuzzy sets which have a characteristic of robustness in the diverse area of intelligence systems. Considering the on-site situation where it is not easy to obtain voltage phases to be used for PRPDA (Phase Resolved Partial Discharge Analysis), the PD data sets measured in the laboratory were artificially changed into data sets with shifted voltage phases and added noise in order to test the proposed algorithm. Also, the results obtained by the proposed algorithm were compared with that of conventional Neural Networks(NNs) as well as the existing Radial Basis Function Neural Networks (RBFNNs). The T2FNNs proposed in this study were appeared to have better performance when compared to conventional NNs and RBFNNs.

GLOBAL EXPONENTIAL STABILITY OF BAM FUZZY CELLULAR NEURAL NETWORKS WITH DISTRIBUTED DELAYS AND IMPULSES

  • Li, Kelin;Zhang, Liping
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.211-225
    • /
    • 2011
  • In this paper, a class of bi-directional associative memory (BAM) fuzzy cellular neural networks with distributed delays and impulses is formulated and investigated. By employing an integro-differential inequality with impulsive initial conditions and the topological degree theory, some sufficient conditions ensuring the existence and global exponential stability of equilibrium point for impulsive BAM fuzzy cellular neural networks with distributed delays are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on the delay kernel functions and system parameters. It is believed that these results are significant and useful for the design and applications of BAM fuzzy cellular neural networks. An example is given to show the effectiveness of the results obtained here.

MEMBERSHIP FUNCTION TUNING OF FUZZY NEURAL NETWORKS BY IMMUNE ALGORITHM

  • Kim, Dong-Hwa
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.261-268
    • /
    • 2002
  • This paper represents that auto tunings of membership functions and weights in the fuzzy neural networks are effectively performed by immune algorithm. A number of hybrid methods in fuzzy-neural networks are considered in the context of tuning of learning method, a general view is provided that they are the special cases of either the membership functions or the gain modification in the neural networks by genetic algorithms. On the other hand, since the immune network system possesses a self organizing and distributed memory, it is thus adaptive to its external environment and allows a PDP (parallel distributed processing) network to complete patterns against the environmental situation. Also, it can provide optimal solution. Simulation results reveal that immune algorithms are effective approaches to search for optimal or near optimal fuzzy rules and weights.