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Abstract

In this study, a new architecture and comprehensive design methodology of genetically optimized Multi-layer Fuzzy
Neural Networks (gMFNN) are introduced and a series of numeric experiments are carried out. The gMFNN
architecture results from a synergistic usage of the hybrid system generated by combining Fuzzy Neural Networks
(FNN) with Polynomial Neural Networks (PNN). FNN contributes to the formation of the premise part of the overall
network structure of the gMFNN. The consequence part of the gMFNN is designed using PNN. The optimization of
the FNN is realized with the aid of a standard back-propagation learning algorithm and genetic optimization. The
development of the PNN dwells on the extended Group Method of Data Handling (GMDH) method and Genetic
Algorithms (GAs). To evaluate the performance of the gMFNN, the models are experimented with the use of a
numerical example.
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1. Introductory remarks

Efficient modeling techniques should allow for a
selection of pertinent variables and a formation of highly
representative datasets. The models should be able to
take advantage of the existing domain knowledge (such
as a prior experience of human observers or operators)
and augment it by available numeric data to form a
coherent  data-knowledge modeling entity. The
omnipresent modeling tendency is the one that exploits
techniques of Computational Intelligence (CI) by
embracing fuzzy modeling [1-6], neurocomputing [7], and
genetic optimization [89].

In this study, we develop a hybrid modeling
architecture, called genetically optimized Multi-layer
Fuzzy Neural Networks (gMFNN). In a nutshell,
gMFNN is composed of two main substructures driven
to genetic optimization, namely a fuzzy set-based fuzzy
neural network (FNN) and a polynomial neural network
(PNN). From a standpoint of rule-based architectures,
one can regard the FNN as an implementation of the
antecedent part of the rules while the consequent
(conclusion part) is realized with the aid of a PNN. The
role of the FNN is to interact with input data, gramilate
the corresponding input spaces (viz. converting the
numeric data into representations at the level of fuzzy
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sets). In the first case (Scheme I) we concentrate on the
use of simplified fuzzy inference. In the second case
(Scheme II), we take advantage of linear fuzzy inference.
The role of the PNN is to carry out nonlinear
transformation at the level of the fuzzy sets formed at
the level of FNN. The PNN that exhibits a flexible and
versatile structure [10] is constructed on a basis of a
Group Method of Data Handling (GMDH [21]) method
and genetic algorithms (GAs). In this network, the
number of layers and number of nodes in each layer are
not predetermined but can be generated in a dynamic
fashion. The design procedure applied in the construction
of each layer of the PNN deals with its structural
optimization involving the selection of optimal nodes
with specific local characteristics (such as the number of
input variables, the order of the polynomial, and a
collection of the specific subset of input variables) and
addresses specific aspects of parametric optimization. To
assess the performance of the proposed model, we
exploit a well-known time series data. Furthermore, the
network is directly contrasted with several existing
intelligent models.

2. The architecture and development of
genetically optimized MFNN (gMFNN)

The gMFNN emerges from the genetically optimized
multi-layer perceptron architecture based on fuzzy
set-based FNN, GAs and the GMDH method. In the
sequel, these networks result as a synergy between two
other general constructs such as FNN [14,15] and PNN
[10].
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2.1 Fuzzy neural networks and genetic optimization

We use FNN based on two types of fuzzy inferences,
that is, simplified fuzzy inference-based FNN (Scheme )
and linear fuzzy inference-based FNN (Scheme II) as
shown in Fig. 1.

Layer 4

“Y;' 2 Layer3

(b) Scheme I

(a) Scheme I
Fig. 1. Topologies of fuzzy set-based FNN

The notation used in Fig.]l requires some clarification.
The “circles” denote units of the FNN while “N”
identifies a normalization procedure applied to the
membership grades of the input variable x,. The output
of the “X)” neuron is described by a nonlinear function
fi(x;). Not necessarily f; is a sigmoid function
encountered conventional neural networks but we allow
for more flexibility in this regard. Finally, the output of
the FNN is governed by the following expression.

= A0) + ) o ) = 20 S M

with m being the number of the input variables. We can
regard each f;(x;) given by (1) as the following
mappings (rules).

Scheme I R’ : If x; is A; then Cy;=w; )
Scheme Il R’ : If x; is Ay then Cyy=ws;+wy-x  (3)

R’ is the j—th fuzzy rule while A, denotes a fuzzy
variable of the premise of the fuzzy rule and represents
a membership function g, wij is a constant in (2), and
ws; is a constant and wij is an input variable
consequence of the fuzzy rule in (3). They express a
connection (weight) existing between the neurons as
visualized in Fig. 1. Mapping from x; to f;(x;) in (2) is
determined by the fuzzy inferences and a standard
defuzzification (center of gravity aggregation).

flx)= /Zlﬂij(xi) . wii/ lgl#ij(xi) 4

The leamning of FNN is realized by adjusting
connections of the neurons and as such it follows a
standard Back-Propagation (BP) algorithm [14]. For the
simplified fuzzy inference-based FNN, the update
formula of a connection in Scheme I is as follow.

dw; = 2-7°(y,— EAK rix) (5)

+d(w,‘,‘(t)_wii(t_ 1))

where, v, is the p-th target output data, v, stands

for the p— th actual output of the model for this specific
data point, 7 is a positive learning rate and @ is a
momentum coefficient constrained to the unit interval
The inference result and the learning algorithm in linear
fuzzy inference-based FNN use the mechanisms in the
same manner as discussed above.

The task of optimizing any complex model involves
two main phases. First, a class of some optimization
algorithms has to be chosen so that it is applicable to
the requirements implied by the problem at hand.
Secondly, various parameters of the optimization algo-
rithm need to be tuned in order to achieve its best
performance. Along this line, genetic algorithms (GAs)
are optimization techniques based on the principles of
natural evolution. In essence, they are search algorithms
that use operations found in natural genetics to guide a
comprehensive search over the parameter space [8,9)]. In
order to enhance the learning of the FNN and augment its
performance of a FNN, we use GAs to adjust learning
rate, momentum coefficient and the parameters of the
membership functions of the antecedents of the rules.

2.2 Genetically optimized PNN (gPNN)

When we construct PNs of each layer in the conven-
tional PNN [10], such parameters as the number of input
variables (nodes), the order of polynomial, and input
variables available within a PN are fixed (selected) in
advance by the designer. This could have frequently
contributed to the difficulties in the design of the optimal
network.

Configuration of input vatiables for consequence part
& initial information cancerning GAs and gPNN

Reprod
Roul heel selection
One-point crossover
Invert mutation

ion of PNs(Fitness)

. X ST Xy T2y e Xy =2y
Elitist strategy & The outputs of the preserved PNs
Selectivnof PNS(W) serve as new inputs to the next

layer

Generate a layer of gPNN

Alayer consists of optimal PNs
selected by GAs

Stop No
condition

Yes

gPNN
¢PNN is arganized by GMDH and
GAs

Fig. 2. Overall genetically—driven optimization process of
PNN

To overcome this apparent drawback, we introduce a
new genetic design approach; especially as a
consequence we will be referring to these networks as
genetically optimized PNN (to be called gPNN). The
overall genetically-driven optimization process of PNN is
shown in Fig. 2.
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3. The algorithms and design procedure of
genetically optimized MFNN

The premise of gMFENN: FNN (Refer to Fig 1)

[Layer 1] Input layer.

[Layer 2] Computing activation degrees of linguistic
labels.

[Layer 3] Normalization of a degree activation of the
rule.

[Layer 4] Multiplying a normalized activation degree of
the rule by connection (weight).

a;= pyx Cyy= pyx Cy; 6

Simplified : Cy;= w;
Linear Cy‘-,-= ws,;+ w,']"i‘ Wit X; (7)

If we choose Connection point 1 for combining FNN
with gPNN as shown in Fig. 3, aij is given as the input
variable of the gPNN.

Connection peint 1

Fig. 3. Connection points for combining FNN with gPNN

[Layer 5] Fuzzy inference for the fuzzy rules. If we
choose Connection point 2, fi is the input
variable of gPNN.

[Layer 6; Output layer of FNNI Computing output of a

FNN.
onsequence of gMFNN: gPNN (Refer ig 2
[Step 1] Configuration of input variables. If we choose
the first option, x;, = ay, %2 = @, ", X4 = aj
(n=ixj. For the second option, we have
X1 =F. %=to, , %= Fm (n=m).
[Step 2] Decision of initial information for constructing
the gPNN.

[Step 31 Initialization of population.
[Step 4] Decision of PNs structure using genetic design.
This concerns the selection of the number of input
variables, the polynomial order, and the input variables
to be assigned in each node of the corresponding layer.
We divide the chromosome to be used for genetic
optimization into three sub-chromosomes as shown in
Fig. 4. The 1™ sub-chromosome contains the number of
input variables, the 2 involves the order of the
polynomial of the node, and the 3™ (remaining bits)
contains input variables coming to the corresponding
node (PN). In Fig. 5, ‘PNn’ denotes the n™ PN (node)
of the corresponding layer, ‘N’ denotes the number of
inputs coming to the node, and . ‘T’ denotes the
polynomial order in the node[10].
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Fig. 4. The PN design using genetic optimization

n® Polynomial Neuron(PN)

FPN N
RN ]T
x; & *» Polynomial order(Type T)
No. of inputs

Fig. 5. Formation of each PN

[Step 5] Evaluation of PNs.

[Step 6] Elitist strategy and selection of PNs with the
best predictive capability. We select W of PNs
characterized by the best fitness values.

[Step 7] Reproduction. To move on to the next
generation, we carry out selection, crossover,

and mutation operation using  genetic
information and the fitness values obtained via
Step 5.

[Step 8] Repeating Step 4-7.

[Step 9] Construction of their corresponding layer.

[Step 10] Check the termination criterion. In this study,
we use a measure (performance index) that is
the Mean Squared Error (MSE).

E(PI or EPI)=—17; gl(yp_ 3,)° )

[Step 11] Determining new input variables for the next
layer.
The gPNN algorithm is carried out by repeating Steps
4-11.

4. Experimental studies

The performance of the gMFNN is illustrated with the
aid of a time series of gas furnace (Box-Jenkins data
[16)). Genetic algorithms use binary type, roulette-wheel
selection, one-point crossover, and an invert operation in
the mutation. The crossover rate of GAs is set to 0.75
and probability of mutation is equal to 0.065. The time
series data (296 input-output pairs) resulting from the
gas furnace process has been intensively studied in the
previous literature [1-6,12-16]. The delayed terms of
methane gas flow rate, #(# and carbon dioxide density,
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y(H are used as system input variables. We use two
types of system input variables of FNN structure, Type
I and Type II to design an optimal model from gas
furnace data. Type I utilize two system input variables
such as «(t—3) and »(¢—1) and Type II utilizes 3
system input variables such as #(¢—2), »(¢{—2), and
w(t—1). The output variable is 3(#). The first part of
the dataset (consisting of 148 pairs) was used for
training. The remaining part of the series serves as a
testing set.

Table 1. Parameters of the optimization environment and
computational effort

Generation 150
Population size 60 2
Elite population size (W) 30 %
10 AT
. Premise structure (FNN) | (per one 1 N
String i VA
length variable) -2y A1
Consequence structure 343494 {;’(ﬁ' 5
(PNN) 'o‘\\ﬁ'd \
No. of entire system inputs 3 D
Learning iteration 500 b \m
Premise Learning rate |Simplified| 0.0124 “' e
(F‘*;I“;U tuned Linear | 0.0204 &5
Momentum Simplified| 0.0083
Coefﬁmi?; tgpiiles Linear 0'0294 (b) Linear fuzzy inference
o ot enﬁre' Connection pomt 1 6 Fig. 6. Optimal topology of gMFNN for the gas furnace
inputs Connection point 2 3
Consequence Maximal layer 5 08 . 1
(gPNN) No. of inputs to be L<N<4 07l weeeeen iE_PL
selected(N) T 0sb s lyer o P 1
TVDe(T) 1<T=<3 X ‘_ Ind layer
N, T : integer p I gete T tyer
é 04t '. 4th Layer
£ s Sth layer.
Table 2. Performance index of gMFNN for the gas A Y o
furnace E_PI30.143
e e b L JEPRONS B RI=0110
F0.0256 PI;ZOOWA %m:unnu
0 lel') 4(‘)0 5po 150 300 4;0 600 750
Iteration Generation

4 2 3 Fig. 7. Optimization procedure of gMFNN by BP
j ;)5 ?3 g learning and GAs
2| 4 |1 |2 2 _
Z | (9v2: |002a8 0,12 4 |18 16 2 Table 1 shows computational aspects related to the
El 2 j ?1 2 Z genetic optimization of the network. Table 2 summarizes
7 128 |2 ) the results of the optimized architectures according to
4 |2 16 1 connection points based on each fuzzy inference method.
: é ;2 2 In Table 2, as the premise FNN, Type II is shown. The
T 6 |2 3 values of the performance index of output of the
3 |4 |16 1 gMFNN depend on each connection point based on the
51 6 ; ﬁ ?‘8‘ ; individual fuzzy inference methods. The values of the
§ ('32*)2* 0.02560.143 3 1L 12 3 performance index vis-a-vis choice of number of layers
4 |12 (15 1316 | 2 ]00196 | 0.120 of gMFNN related to the optimized architectures in each
i ;9 ;‘; TRE f g'gi:g gﬂi layer of the network are shown in Table 2. The optimal
N T 1313 T 5 1 1 oo (5110 topology of gMFNN is shown in Fig. 6. Fig. 7 illustrates

the optimization process by visualizing the performance
index in successive cycles (iteration and generation). It
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also shows the optimized network architecture when
taking into consideration gMFNN based on linear fuzzy
inference and connection point (CP) 2, refer to Table 2.
Table 3 contrasts the performance of the genetically
developed network with other fuzzy and fuzzy-neural
networks studied in the literatures. It becomes obvious
that the proposed genetically optimized gMFNN
architectures outperform other models both in terms of
their accuracy and higher generalization capabilities.

Table 3. Comparison of performance with other modeling

methods
Box and Jenkins model [16] 0.710
Pedryczs model [1] 0.320
Xu and Zailus model [2] 0.328
Sugeno and Yasukawa's model [3]] 0190
Kim, et al.’s model {17] 0.034 0.244 2
Lin and Cunningham’s mode {18]| 0.071 0.261 4
Complex [4] Simplified| 0.024 0.328 4(2%2)
D Linear | 0023 | 0306 | 4(2x2)
Hybrid 6] |gimplified| 0024 | 0329 | 4(2x2)
(GAs+ ;
Fuzzy| Complex) Linear 0.017 0.289 4(2%2)
Simplified 0.035 0.289 4(2x2)
HCMAGAS 5] P 0022 | 0333 | 6(3x2)
Linear L0026 | 0272 | 4(2x2)
0.020 0.264 6(3%X2)
Simplified| 0.043 0.264 6(3+3)
FNN [15] Linear | 0037 | 0273 | 6(3+3)
Generic 0.017 0.250 4[ hrules/
[12] 5" layer
SOFPNN Advanced 6 rules/
0019 | 0264 |

6. Concluding remarks

The comprehensive design methodology comes with
the parametrically as well as structurally optimized
network architecture. 1) As the premise structure of the
gMFNN, the optimization of the rule-based FNN hinges
on genetic algorithms and back-propagation (BP)
learning algorithm: The GAs leads to the auto—tuning of
vertexes of membership function, while the BP algorithm
helps obtain optimal parameters of the consequent
polynomial of fuzzy rules through learning. And 2) the

gPNN that is the consequent structure of the gMFNN is

based on the technologies of the extended GMDH
algorithm and GAs: The extended GMDH method is
comprised of both a structural phase such as a
self-organizing and evolutionary algorithm (rooted in
natural law of survival of the fittest), and a parametric
phase of least square estimation (LSE)-based learning,
moreover the gPNN architecture is driven to genetic
optimization, in what follows it leads to the selection of
the optimal nodes (or PNs) with local characteristics
such as the number of input variables, the order of the
polynomial, and a collection of the specific subset of
input variables. In the sequel, a variety of architectures
of the proposed gMFNN driven to genetic optimization
have been discussed. The experiments helped compare
the network with other intelligent models - in all cases
the previous models came with higher values of the
performance index.

References

(1] W. Pedrycz, “An identification algorithm in fuzzy
relational system,” Fuzzy Sets and Systems, Vol
13, pp.153-167, 1984.

[21 C. W. Xu, and Y. Zailu, “Fuzzy model identification
self-learning for dynamic systemn,” IEEE Trans. on
Syst. Man, Cybern., Vol. SMC-17, No.4, pp.633-639,
1987.

[3] M. Sugeno and T. Yasukawa, “A Fuzzy-Logic-
Based Approach to Qualitative Modeling,” IEEE
Trans. Fuzzy Systems, Vol. 1, No. 1, pp. 7-31,

1993.
[4] S.-K. Oh and W. Pedrycz, “Fuzzy Identification by
Means of Auto-Tuning Algorithm and Its

Application to Nonlinear Systems,” Fuzzy Sets and
Systems, Vol. 115, No. 2, pp. 205-230, 2000.

[5] B.-J. Park, W. Pedrycz and S.-K. Oh, “Identification
of Fuzzy Models with the Aid of Evolutionary Data
Granulation,” IEE Proceedings—Control theory and
application, Vol. 148, Issue 5, pp. 406-418, 2001.

(6] S-K. Oh, W. Pedrycz and B.-J. Park, “Hybrid
Identification of Fuzzy Rule-Based Models,”
International Journal of Intelligent Systems, Vol. 17,
Issue 1, pp. 77-103, 2002.

[71 K. S. Narendra and K. Parthasarathy, “Gradient
Methods for the Optimization of Dynamical Systems
Containing Neural Networks,” IEEE Transactions on
Neural Networks, Vol. 2, pp. 252-262, 1991.

[81 Z. Michalewicz, “Genetic Algorithms + Data
Structures = Evolution Programs,” Springer-Verlag,
Berlin Heidelberg, 1996.

[9] Holland, J. H., “Adaptation in Natural and Artificial
Systems,” The University of Michigan Press, Ann
Arbour, 1975.

[10] S.-K. Oh, W. Pedrycz and B.-]J. Park, “Polynomial

Neural Networks Architecture: Analysis and
Design,” Computers and Electrical Engineering,



The Design of Genetically Optimized Multi-layer Fuzzy Neural Networks

Vol. 29, Issue 6, pp. 6563-725, 2003.

A. G. Ivahnenko, “The group method of data

handling: a rival of method of stochastic

approximation,” Soviet Automatic Control, Vol. 13,
No. 3, pp. 43-55, 1968.

[12] B.~]. Park, S.-K. Oh, S.-W. Jang, “The Design of

Adaptive Fuzzy Polynomial Neural Networks

Architectures Based on Fuzzy Neural Networks

and Self-Organizing Networks,” Journal of Control,

Automation and Systems Engineering, Vol. 8, No.

2, pp.126-135, 2002. (In Korean)

B.-J. Park and S-K. Oh, “The Analysis and
Design of Advanced Neurofuzzy Polynomial
Networks,” Journal of the Institute of Electronics
Engineers of Korea, Vol. 39-CI, No. 3, pp.18-31,
2002. (In Korean)

T. Yamakawa, “A New Effective Learning
Algorithm for a Neo Fuzzy Neuron Model,” 5th
IFSA World Conference, pp. 1017-1020, 1993.

S.-K. Oh, W. Pedrycz and H.-S. Park, “Hybrid
Identification in Fuzzy-Neural Networks,” Fuzzy
Sets and Systems, Vol 138, No. 2, pp. 399-426,
2003.

D. E. P. Box and G. M. Jenkins, “Time Series
Analysis, Forecasting, and Control,” 2nd edition
Holden-Day, SanFransisco, 1976.

[17]1 E. Kim, H. Lee, M. Park and M. Park, “A Simply
Identified Sugeno-type Fuzzy Model via Double
Clustering,” Information Sciences, Vol. 110, pp.
25-39. 1998.

18] Y. Lin, G. A. Cunningham III, “A new Approach

to Fuzzy-neural Modeling,” IEEE Transaction on

Fuzzy Systems, Vol. 3, No. 2, pp. 190-197, 1997.

S.~-K.  Oh, Computational Intelligence by
Programming(focused on Fuzzy, Neural Networks,
and Genetic Algorithms), Naeha press, 2002.

{11}

{13]

[14]

[15]

[16]

{19]

S PN e

Byoung—Jun Park
He received the B.S., and M.S. degrees

in control and instrumentation
engineering from the  Wonkwang
University, in 1998, and 2000,

respectively. He received his Ph.D.
degrees from the Department of
Electrical Engineering, Wonkwang
in 2003. His research interests concerns
fuzzy, neurofuzzy  systems, genetic algorithms,
Computational  Intelligence, hybrid systems, and
intelligent control.

University,

Keon-Jun Park

He received the B.S degrees in
electronics  engineering from  the
Wonkwang University, in 2003. He is
now pursuing his Master degree in
control and instrumentation engineering,
Wonkwang University. His research
interests include FIS, Neural Networks,
GAs, optimization theory, Computational Intelligence and
Automation control.

Dong-Yoon Lee

He received the B.S. degree in the
Department of Electrical Engineering
from Wonkwang University, in 1987.
And he received the M.S., PhD.
degrees in the Department of Electrical
Engineering from Yonsei University, in
1990, 2001, respectively. He Thad
worked as a research engineer in Intellect, J-tek and
KIST from 1990 to 2000. From March 2001 to February
2002, he was a B.K. Professor in the School of
Electrical, Electronic and Information Engineering,
Wonkwang University. He is currently a assistant
professor in the Department of Information and
Communication Engineering, Joongbu University.

Sung-Kwun Oh

He received the B.S. M.S. and Ph.D.
degrees in electrical engineering from
Yonsei University, Seoul, Korea, in
1981, 1983, and 1993, respectively.
During 1983-1989, he had worked as the
Senior Researcher of R&D Lab. of
Lucky-Goldstar Industrial Systems Co.,
Ltd. He had worked as a Postdoctoral fellow in the
Department of Electrical and Computer Engineering
University of Manitoba, Canada, from 1996 to 1997. He
is currently an Associate Professor in the School of

e

Electrical, Electronic and Information Engineering,
Wonkwang University, Korea. His research interests
include the fields of fuzzy system, fuzzy-neural

networks, automation systems, advanced Computational
Intelligence, and intelligent control. He is a member of
IEEE. He currently serves as a Associate Editor of the
Korean Institute of Electrical Engineers(KIEE) and the
Institute  of  Control, Automation &  Systems
Engineers(ICASE), Korea

665



