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Abstract
This paper examined the relations among the multidimensional hnear interpolation (
MDI ) and fuzzyv reasoning, and neural networks, and showed that an MDI 1s a special
form of Tsukamoto’s fuzzy reasoning and regularization networks in the perspective of
fuzzy reasoning and neural networks, respectively. For this purposes, we proposed a
special Tsukamoto's membership ( STM ) system and triangular basis function ( TBF )
network. Also we verified the condition when our proposed TBF becomes a well-known

radial basis function ( RBF ).
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1. Introduction

The training process of a neural network
may be viewed as one of curve fitting [1].
used in the
application of signal processing [2], fuzzy
learning [3] and so on. Multidimensional
linear interpolation ( MDI ) is a useful
method for nonlinear function problem. This
paper examined the relations among the MDI,
fuzzy reasoning, and neural networks, and
showed that an MDI is a special form of
Tsukamoto's  fuzzy [4][5] and
regularization networks [6] in the perspective
of fuzzy and neural networks,
respectively. For this purpose, we proposed a
special Tsukamoto’s membership ( STM )
system and triangular basis function ( TBF )
networks. Also we verified the condition
when our proposed TBF becomes a
well-known radial basis function ( RBF ).

This paper is organized as follows. We

Interpolation  technique is

reasoning

reasoning

stated an MDI in section 2. In section 3, we
derived the MDI from the STM system. In
section 4, we derived the MDI from the
proposed TBF networks. In section 5 we

summarized and discussed about our studies.
Finally, in section 6, conclusions were stated.

2. Multidimensional Linear
Interpolation

Before we proceed, it is necessary to
comprehend that what we mean the MDI is
the problem of interpolating on a mesh that
is Cartesian, ie., has not tabulated function
values at ‘random’ points in n-dimensional
rather than at the vertices of a
rectangular array. This rectangular data array
will be called a look—-up table ( LUT ) from
now. For simplicity, we consider only the
case of three dimensions, the cases of two
and four or more dimensions being analogous
in every way. If the input variable arrays are
xial 1, xeal 1, and xz[ 1, the output y ( xi, xu,
xa ) has following relation [7].

Yol milnll 1= y(oro[ml, 220l 2], x3l 7D).

H

The goal i1s to estimate, by interpolation,
the function y at some untabulated point ( xi,
X2, x3 ). If x1, x2, x3 satisfy

space
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Xl m] < x < x,0 mt1]
Kool m ] € x5 € 20,0 n+1 ] (D)
X3l 7 ] < x5 < a3, r+1 ],

the grid points are

y1 = Yl m I n I 1
Vs = Yol m I n I r+11,
yvi =Y m WA n+t1 1 r»r 1,
Vi = Yol m I nt+tl ) r+1 ],(3)
vs = v m+1 1 » I ],
v = Yol m+1 1 n N »+1 1,
vi = Yl m+1 N n+1 X » 1,
Ve = Yol m+1 1 n+1 [ »+1 1.

The final 3-dimensional linear interpolation
1S

ylvi, x2, x3) =

(1 — (1 — (1 — wy
+ (1 = (1 — v)X W)y,
+ (1 — uX (1 — wy,
+ (1 — uX )( Wy g
+ ( (1 — (1 — wys
+ w(l — o) w)ys
+ 2)( (1l — wy;
+ ( u)( u)( w)yg,
where
_ _xm—xelml
u = x,a[m+l]_x1a[m] ’
- %~ Xpal 1] 5)
VT T nt 1= a0l
w = X3 — X3, 7]

x3a[ r+ 1] - x3(1[ 7] ’

( u, v, and w each lie between 0 and 1. )

We can see the estimated y uses 2" table

terms if n-dimensions, and it satisfies 8
terms in the case of three dimensions as
above.

3. Tsukamoto’s Fuzzy Reasoning

Tsukamoto used monotonic
functions for linguistic

membership
terms {4]. As an

example, consider the case of two input
variables and one output vanable.
Kl :Ifx1=Au and x2:A21,
then Y = Bl.
K2 :Ifx1=A12 and X2:A22_
then y,= B, 6)
K3 :Ifx1=A13 and x2=A23’
then Vi = Bgy
R4 :Ifx1=Al4 and X2=A24’
then y,= B,

where

vi. Inferred variable of the consequence.
x1, x2. Variables of the premise.
A, Azt Normalized fuzzy sets over the
input domain U and V.
Bi: Normalized fuzzy sets over the output
domain W.

If we define the fuzzified value Ay and A

’ . 0 0
2 for Input xi = xi, xx = x», as fuzzy
singletons as follows,
Ay — {1, if 2 =x,
0, otherwise, (7)
A, = {l, if x2==‘xg,
2 0, otherwise,

the compatibility w; for ith rule is,
w; = Ay (DAAx(2), @
or
w; = Ay (x)Ag (). 9)
Here, Eq. (8) means logical product (A),
and Eq. (9) algebraic product ( » ). The result
y; inferred from It is defined as follow :
B(y}) — yi = B '(w;). (10)
The final inferred value y* from all rules

usually calculated by weighted combination
method as follows :

Z w B w;)

y = e (11

w’ =

w;
=
B; must be monotonic, whereas Ai, and

A2 have no restriction of shape.

3.1 Expression of multidimensional linear
interpolation from fuzzy reasoning

Triangular membership functions are used
to subdivide the input universe. A fuzzy set
A:; defined by triangular membership
functions has the form

X— ;. .
i a;,-1<x<a;
a;,— a;-y
_ ~x+a, ) (12)
wx) = "(Z"I;l';% , if @;<x<a,
0 , otherwise.
The point a will bhe referred to as the

midpoint of A. The leftmost and rightmost
fuzzy regions are truncated with the midpoint
as the leftmost rightmost position,
respectively. And the straight
membership functions are used for the output
Fig. 1 and Fig. 2 help to
understand the above relations.

and
line

universe W.
From now,
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previous membership system will be called a
STM ( Special Tsukamoto’s Membership )
system.

B 1 1 B2
0 q w
bl b2
Fig. 1. Trangular decomposition of
inputdomain.
Al A a A A5
1
0 v
al a2 a3 a4 as

Fig. 2. Representing output domain
usingstraight line monotonic membership
function.

As an example, we consider three 1nput
variables.
inputs x1°, x2 and X3 the compatibility w; is
A1)V As(xX) V Al V denotes
triangular norms ( T-norm ). And w; = 0 if
Aidxa®) = 0 or Ax(x") = 0 or Az(x®) = 0. If
the number of input variables are n, there

If we use fuzzy singletons as

where

are at most 2" cases of possible maximum
rules that have non-zero w;, and the possible
number of non-zero rules is eight for the
case of n = 3. Possible rulse are smaller than
2" when there are variables of premise which
lies on midpoints of Ai. This fact coincides
with the number of table terms which are

used in MDIL If we use algebraic product

for w;,
wi = ApL(x)Ay (DAL (). (13)
The defuzzified ith value is
yi = ug(w)
(14)

= (Aq DAL A D).

We define the overall defuzzified value y°
as Eq. (15) ( Note that weighed combination
method 1s usually used in Tsukamoto’'s

defuzzification. ),

y' = iyf.
~

This results is equal to that of Eq. (4).
can easily that the
dimensions ( one, two, four or more ) in
MDI produce the same results of previous
special
which the number of input variable is n.

(15)

We

verify cases of

Tsukamoto's fuzzy reasoning In

4. Triangular Basis Function
Networks

Typical RBF networks and regularization
networks are shown in Fig. 3.

w=1

F(x)

input Hidden layer Output
layer of radial- layer
basis
functions

(a)

Input Hidden Output
Jayer layer layer
of Green's
functions
(b)

Fig. 3. (a) Radial basis function networks,
(b) regularization networks. ( From {11, p.
256, 260. )

4.1 RBF networks

RBF networks were originally proposed as
an interpolation method, and their properties
as interpolants have been extensively studied

{8]. The radial basis function ( RBF )
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technique consists of choosing a function F
that has the following form [10);

FOO = 3,001 X~ Gl + wy (16

where {e (IX-CIDli =1,2, .., N }is a set
of N arbitrary ( generally nonlinear )
functions, known as radial basis function, and
I i} denotes a norm that is usually taken to
be Euclidean. The known data points C; €

R, i =1, 2 .., N are taken to be the
centers of the radial basis function.
Theoretical investigations and practical

results, however, seem to show that the type
of nonlinearity ¢(+) is not crucial to the
performance of RBF networks [10].

Property 1 ( Factorizable Radial Basis
Function ) : For a radial basis function ¢
we have

o1l X~ C|1Y) , :
= o(lx;— cll)@(lxy— ol ). .. @lxn— cnl®)

(17)

The synthesis of radial basis functions in
many dimensions may be easier if they are
factorizable. It can be easily proven that the

only radial basis function which is
factorizable is the Gaussian. A
multidimensional Gaussian function can be
represented as the product of lower
dimensional Gaussians. Aside the
implementation point of view, since it is
difficult to imagine how neurons could

compute GUIX-ClI®) in a simple way for
dimensions higher than two [11].

4.2 Regularization Networks
The principle of regularization is :

Find the function F(X) that minimizes the
cost functional E(F), defined by
E(F) = Es(F)+AE(F) (3
where Es(F) is the standard error term,
Ec(F) is the regularization term, and A is
the regularization parameter (9, p. 247].

We may state that the solution to the
regularization problem is given by the
expansion

FX)=3%wG(X:C) (9

where G(X ; C) is the Green's function.
For detail illustration of regularization
problem and Green’s function, see [9][11]
The RBF is a restricted version of the
regularization function. The condition for this
is translational and rotational invariance.

m Translational invariance @ The Green’s
function G(X ; C) centered at C; will
depend only on the difference between
the argument X and Ci ; that is

GX;,C)=G(X - G

» Translational and rotational invariance :
The Green’s function G(X ; C) centered
at C; will depend only on the Euclidean
norm of X and C; ; that is G(X ; C) =
GUlX - ClD.

Under these conditions, the Green's
function network must be a radial-basis
function network as follow.

FX)= 3w X —Cl). (@)

It is important, however, to realize that
this solution differs from that of Eq. (16) in
a fundamental respect: It is only when we
set the regularization parameter A equal to
zero that the two solutions may become one
and the same except wy [9].

4.3 Trangular basis function networks

Proposed TBF network is one kind of
regularization networks. So the structure of
TBF networks are equal to that of
regularization networks.

Definition 1 (Triangular Basis Function ) :

AMX;C) =A(X = C) (. 1)
(21)
= ,‘Ijl( (XK”“ Ck) (rlK. r’2K>)
where
_tfrtl_l'l_' for —rlKr<0,
Ay m) = 1—Tr2-, for 0K r< r2,(22)
0, for otherwise.

and P is the dimension of input space. See
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Fig. 3 for graphical illustration. Then the

TBF network is
F(X) = ﬁ;wt‘/l( (X'— C)<rl,t>2) )
3 (23

- ﬁ;w"(,li((XK_ Ck) cr1x. 2ax) |-

Egs (21) and (22) state the followings.

m Proposed TBF can be calculated only by
factorized form if the
multidimensional.

® Proposed triangular basis function holds
only the  property of

input space is

translation
tnvariance.

s If the interval of each dimensional data
of LUT is constant ( 7l = 72 ;
rotational invariance ), triangular basis
function becomes radial basis function.

‘A'()Z’!l,'h))
1
-7 00 72 7

Fig. 4. Triangular basis function A(r<m =),

4. 4.

linear interpolation

function networks
From Eq. (22)

AC(x—1) o1 e23)

of multidimensional
from triangular basis

Expression

xoErTl oo gx—t<0,
7l
= 1—1:2—t, for 0<x—t<12,
0, for otherwise, (24)
KM, for —l<x—1<0,
t—(t—11)
=4 x—1 _
1 (t+r2)_t, for O(x fSZ'Z,
0, for otherwise.

We can easily venfy that this is equal to
{(ul,(1-w)} or {(wh(1-v)} or {(wh(l-w)} of
Eq. (4). If we set w, C, <tl, 2> to be
value, position, and distances between C and
nearby C, respectively, the output of TBF
network is equal to Eq (4) for three
dimension, i.e., in Eq (20) w: is corresponding

to yi, and {(u} or (1-t)H (v} or (1-VYH{(w} or
(I-w)} to AMX-C<nzs) = Mg
sU{Xx-Cx)<nk i) for three dimensions. We
can also verify that the cases of n-dimension
( one, two, four or more ) in an MDI
produce the results of the
corresponding TBF network.

same

5. Discussion

We showed two interesting results in this
paper.

Firstly, multidimensional linear interpolation
( MDI ) is a special form of Tsukamoto’'s
fuzzy reasoning. And if compatibility w; is
well defined, defuzzification strategy can be
achieved simply by summing of each
defuzzified ith value y'. If we use the
followings in Tsukamoto’s method, the result
1s equal to an MDIL

@D input variable : fuzzy singleton.
(@ membership system : STM system as

discribed in section 1V,

@ algebraic product for compatibility
wi.
@ final overall

y'= ﬁ]y?-

So, MDI is efficient than fuzzy reasoning
because the former uses valid data whereas
the later calculates all possible cases of rules
even if they produce zero value. If we think
input data are contaminated by noise, we can
regard input value as fuzzy number when we
use fuzzy reasoning method, but an MDI has
no flexibility.

Secondly,

defuzzified value

MDI is a special form of
regularization networks. If we wuse the
followings in regularization networks, the
result is equal to that of an MDIL
D Kernel in hidden layer of regularization
networks @ triangular basis function as
discussed in section 3.3.

® w : value in an LUT.

® C : position in an LUT.

. @ <11, 2> : distances between C and
nearby C.

So, even if we can get the same output,
an MDI is than regularization
networks because the former uses valid data
whereas the later calculate all possible basis

efficient
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functions even if they produce zero value. So
the MDI is than regulanzation
networks in the perspective of operation cost.
But, in TBF networks we have flexibility of
making nonlinear interpolated output simply
by setting a new strategy for <tl, 12> and
w.

efficient

6. Conclusion

that an MDI is a
special form of Tsukamoto’s fuzzy reasoning.
IFrom this result, we
defuzzification strategy can be accomplished
by adding only each rule’s defuzzified value
well  defined. We
compared both MDI and fuzzy reasoning.

Secondly, we showed that an MDI
special form of regularization networks. For
this purpose, we proposed a TBF network.
Also we verified the condition when our
proposed TBF becomes a well-known radial
basis function. We compared both MDI and
triangular basis function networks.

Firstly, we showed

found the overall

if  compatibility w; is

1Is a

Further researchs are necessary to find
compatibility w, which can be used in simple
defuzzification strategies that the overall

defuzzification can be accomplished by adding
each defuzzified values as stated before. And
there remains the problem of relationship
among the MDI of tabulated function wvalues
at "random” points in n-dimensional space |,
fuzzy reasoning, and triangular basis function
networks.
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