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GLOBAL EXPONENTIAL STABILITY OF BAM FUZZY

CELLULAR NEURAL NETWORKS WITH DISTRIBUTED

DELAYS AND IMPULSES†

KELIN LI∗ AND LIPING ZHANG

Abstract. In this paper, a class of bi-directional associative memory
(BAM) fuzzy cellular neural networks with distributed delays and impulses
is formulated and investigated. By employing an integro-differential in-
equality with impulsive initial conditions and the topological degree the-
ory, some sufficient conditions ensuring the existence and global exponen-
tial stability of equilibrium point for impulsive BAM fuzzy cellular neural
networks with distributed delays are obtained. In particular, the estimate
of the exponential convergence rate is also provided, which depends on the
delay kernel functions and system parameters. It is believed that these re-
sults are significant and useful for the design and applications of BAM fuzzy
cellular neural networks. An example is given to show the effectiveness of
the results obtained here.
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1. Introduction

The bi-directional associative memory (BAM) neural network was first intro-
duced by Kosto [17]. It is an important model with the ability of information
memory and information association, which is crucial for application in pattern
recognition, solving optimization problems and automatic control engineering
[17, 18]. In such applications, the stability of networks plays an important role,
it is of significance and necessary to investigate the stability. In both biological
and artificial neural networks, the delays arise because of the processing of in-
formation. Time delays may lead to oscillation, divergence, or instability which
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may be harmful to a system. Therefore, study of neural dynamics with consider-
ation of the delayed problem becomes extremely important to manufacture high
quality neural networks. Recently, BAM neural networks with various delays
have been extensively studied both in theory and applications, for example, see
[19-26] and references therein.

Since Yang et al. proposed the fuzzy cellular neural networks (FCNNs) [1],
the dynamic analysis on FCNNs with various delays and BAM fuzzy neural
networks with transmission delays has been the highlight in the neural network
field, for example, see [2-16] and references therein. On the other hand, besides
delay effect, impulsive effect likewise exists in a wide variety of evolutionary
processes in which states are changed abruptly at certain moments of time, in-
volving such fields as medicine and biology, economics, mechanics, electronics
and telecommunications, etc. As artificial electronic systems, neural networks
such as cellular neural networks, bidirectional neural networks and recurrent
neural networks often are subject to impulsive perturbations which can affect
dynamical behaviors of the systems just as time delays. Therefore, it is neces-
sary to consider both impulsive effect and delay effect on the stability of neural
networks, for example, see [6, 8, 9, 21-26]. To the best of our knowledge, few
authors have considered BAM fuzzy cellular neural networks with distributed
delays and impulses.

Motivated by the above discussions, the objective of this paper is to formu-
late and study BAM fuzzy cellular neural networks with distributed delays and
impulses. Under quite general conditions, some sufficient conditions ensuring
the existence and global exponential stability of equilibrium point are obtained
by the topological degree theory and the integro-differential inequality with im-
pulsive initial conditions and analysis technique.

The paper is organized as follows. In Section 2, the new neural network
model is formulated, and the necessary knowledge is provided. Main results are
presented in Section 3. In Section 4, an example is given to show the effectiveness
of the results obtained here. Finally, we give the conclusion in Section 5.

2. Model description and Preliminaries

In this section, we will consider the model of BAM fuzzy neural networks
with distributed delays and impulses, it is described by the following functional
integro-differential equations:





ẋi(t) = −aixi(t) +
m∑

j=1

aijgj(yj(t)) +
m∑

j=1

ãijvj + Ii

+
m∧

j=1

αij

+∞∫
0

Kij(s)gj(yj(t− s))ds

+
m∨

j=1

α̃ij

+∞∫
0

Kij(s)gj(yj(t− s))ds+
m∧

j=1

Tijvj +
m∨

j=1

Hijvj , t 6= tk

xi(t
+) = xi(t

−) + Pik(xi(t
−)), t = tk, k ∈ N =: {1, 2, · · · },

(1− 1)
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



ẏj(t) = −bjyj(t) +
n∑

i=1

bjifi(xi(t)) +
n∑

i=1

b̃jiui + Jj

+
n∧

i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t− s))ds

+
n∨

i=1

β̃ji

+∞∫
0

K̄ij(s)fi(xi(t− s))ds+
n∧

i=1

T̄jiui +
n∨

i=1

H̄jiui, t 6= tk

yj(t
+) = yj(t

−) +Qjk(yj(t
−)), t = tk, k ∈ N =: {1, 2, · · · },

(1− 2)

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, t > 0, where xi(t) and yj(t) are the states
of the ith neuron and the jth neuron at time t, respectively; fi and gj denote
the signal functions of the ith neuron and the jth neuron at time t, respectively;
ui, vj and Ii, Jj denote inputs and bias of the ith neuron and the jth neuron, re-

spectively; ai > 0, bj > 0, aij , ãij , αij , α̃ij , bji, b̃ji, βji, β̃ji are constants, ai and bj
represent the rate with which the ith neuron and the jth neuron will reset their
potential to the resting state in isolation when disconnected from the networks
and external inputs, respectively; aij , bji and ãij , b̃ji denote connection weights

of feedback template and feedforward template, respectively; αij , βji and α̃ij , β̃ji

denote connection weights of the distributed fuzzy feedback MIN template and
the distributed fuzzy feedback MAX template, respectively; Tij , T̄ji and Hij , H̃ji

are elements of fuzzy feedforward MIN template and fuzzy feedforward MAX
template, respectively;

∧
and

∨
denote the fuzzy AND and fuzzy OR opera-

tions, respectively; Kij(s) and K̄ji(s) correspond to the delay kernel functions,
respectively. tk is called impulsive moment, and satisfies 0 < t1 < t2 < · · · ,
lim

k→+∞
tk = +∞; xi(t

−
k ) and xi(t

+
k ) denote the left-hand and right-hand limits

at tk, respectively; Pik and Qjk show impulsive perturbations of the ith neuron
and jth neuron at time tk, respectively. We always assume xi(t

+
k ) = xi(tk) and

yj(t
+
k ) = yj(tk), k ∈ N . The initial conditions are given by

{
xi(t) = φi(t), −∞ ≤ t ≤ 0,
yj(t) = ϕj(t), −∞ ≤ t ≤ 0,

where φi(t), ϕj(t) (i = 1, 2, · · · , n; j = 1, 2, · · · ,m) are bounded and continuous
on (−∞, 0], respectively.

If the impulsive operators Pik(xi) = 0, Qjk(yj) = 0, i = 1, 2, · · · , n, j =
1, 2, · · · ,m, k ∈ N , then system (1) may reduce to the following model:

ẋi(t) = −aixi(t) +
m∑
j=1

aijgj(yj(t)) +
m∑
j=1

ãijvj

+Ii +
m∧
j=1

αij

+∞∫
0

Kij(s)gj(yj(t− s))ds

+
m∨
j=1

α̃ij

+∞∫
0

Kij(s)gj(yj(t− s))ds+
m∧
j=1

Tijvj +
m∨
j=1

Hijvj ,

(2− 1)
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ẏj(t) = −bjyj(t) +
n∑

i=1

bjifi(xi(t)) +
n∑

i=1

b̃jiui

+Jj +
n∧

i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t− s))ds

+
n∨

i=1

β̃ji

+∞∫
0

K̄ij(s)fi(xi(t− s))ds+
n∧

i=1

T̄jiui +
n∨

i=1

H̄jiui.

(2− 2)

System (2) is called the continuous system of model (1).
Throughout this paper, we make the following assumptions:

(H1) For neuron activation functions fi and gj (i = 1, 2, · · · , n; j = 1, 2, · · · ,m),
there exist two positive diagonal matrices F = diag(F1, F2, · · · , Fn) and
G = diag(G1, G2, · · · , Gm) such that

Fi = sup
x 6=y

∣∣∣∣
fi(x)− fi(y)

x− y

∣∣∣∣ , Gj = sup
x 6=y

∣∣∣∣
gj(x)− gj(y)

x− y

∣∣∣∣
for all x, y ∈ R (x 6= y).

(H2) The delay kernels Kij : [0,+∞) → R and K̄ji : [0,+∞) → R are real-
valued piecewise continuous, and there exists δ > 0 such that

kij(λ) =

∫ +∞

0

eλs|Kij(s)|ds, k̄ji(λ) =

∫ +∞

0

eλs|K̄ji(s)|ds

are continuous for λ ∈ [0, δ), i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
(H3) Let P̄k(x) = x+ Pk(x) and Q̄k(y) = y +Qk(y) be Lipschitz continuous

in Rn and Rm, respectively, that is, there exist nonnegative diagnose
matrices Γk = diag(γ1k, γ2k, · · · , γnk) and Γ̄k = diag(γ̄1k, γ̄2k, · · · , γ̄mk)
such that

|P̄k(x)− P̄k(y)| ≤ Γk|x− y|, for all x, y ∈ Rn, k ∈ N,

|Q̄k(u)− Q̄k(v)| ≤ Γ̄k|u− v|, for all u, v ∈ Rm, k ∈ N,

where
P̄k(x) = (P̄1k(x1), P̄2k(x2), · · · , P̄nk(xn))

T ,
Q̄k(x) = (Q̄1k(y1), Q̄2k(y2), · · · , Q̄mk(ym))T ,
Pk(x) = (P1k(x1), P2k(x2), · · · , Pnk(xn))

T ,
Qk(y) = (Q1k(y1), Q2k(y2), · · · , Qmk(ym))T .

To begin with, we introduce some notation and recall some basic definitions.
PC[J,Rl] =: {z(t) : J → Rl|z(t) is continuous at t 6= tk, z(t

+
k ) = z(tk) and

z(t−k ) exists for t, tk ∈ J, k ∈ N}, where J ⊂ R is an interval, l ∈ N .

PCl =: {ψ : (−∞, 0] → Rl| ψ(s) is bounded, and ψ(s+) = ψ(s) for s ∈
(−∞, 0), ψ(s−) exists for s ∈ (−∞, 0], φ(s−) = φ(s) for all but at most a finite
number of points s ∈ (−∞, 0]}.
Definition 1. A function (x, y)T : (−∞,+∞) → Rn+m is said to be the special
solution of system (1) with initial condition

x(s) = φ(s), y(s) = ϕ(s) s ∈ (−∞, 0],
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if the following two conditions are satisfied

(i) (x, y)T is piecewise continuous with first kind discontinuity at the points
tk, k = 1, 2, · · · . Moreover, (x, y)T is right continuous at each disconti-
nuity point.

(ii) (x, y)T satisfies model (1) for t ≥ 0, and x(s) = φ(s), y(s) = ϕ(s) for
s ∈ (−∞, 0].

Especially, a point (x∗, y∗)T ∈ Rn+m is called an equilibrium point of model (1),
if (x(t), y(t))T = (x∗, y∗)T is a solution of (1).

Throughout this paper, we always assume that the impulsive jumps Pk and
Qk satisfy (referring to [22-26])

Pk(x
∗) = 0 and Qk(y

∗) = 0, k ∈ N,

i.e.,

P̄k(x
∗) = x∗ and Q̄(y∗) = y∗, k ∈ N, (3)

where (x∗, y∗)T is the equilibrium point of continuous systems (2). That is, if
(x∗, y∗)T is an equilibrium point of continuous system (2), then (x∗, y∗)T is also
the equilibrium of impulsive system (1).

Definition 2. The equilibrium point (x∗, y∗)T of model (1) is said to be globally
exponentially stable, if there exist constants λ > 0 and M ≥ 1 such that

‖x(t)− x∗‖+ ‖y(t)− y∗‖ ≤ M(‖ φ− x∗ ‖ + ‖ ϕ− y∗ ‖)e−λt

for all t ≥ 0, where (x(t), y(t))T is any solution of system (1) with initial value
(φ(s), ϕ(s))T and

‖x(t)− x∗‖ =

n∑

i=1

|xi(t)− x∗
i |, ‖y(t)− y∗‖ =

m∑

j=1

|yj(t)− y∗j |,

‖φ− x∗‖ = sup
−∞<s≤0

n∑

i=1

|φi(s)− x∗
i |, ‖ϕ− y∗‖ = sup

−∞<s≤0

m∑

j=1

|ϕj(s)− y∗j |.

Lemma 1. ([2]) For any positive integer n, let hj : R → R be a function
(j = 1, 2, · · · , n), then we have

∣∣∣
n∧

j=1

αjhj(uj)−
n∧

j=1

αjhj(vj)
∣∣∣ ≤

n∑

j=1

∣∣∣αj

∣∣∣ ·
∣∣∣hj(uj)− hj(vj)

∣∣∣,

∣∣∣
n∨

j=1

αjhj(uj)−
n∨

j=1

αjhj(vj)
∣∣∣ ≤

n∑

j=1

∣∣∣αj

∣∣∣ ·
∣∣∣hj(uj)− hj(vj)

∣∣∣

for all α = (α1, α2, · · · , αn)
T , u = (u1, u2, · · · , un)

T , v = (v1, v2, · · · , vn)T ∈
Rn.
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Lemma 2. Let a < b ≤ +∞, and (u(t), v(t))T (u(t) = (u1(t), u2(t), · · · , un(t))
T ∈

PC[[a, b), Rn], v(t) = (v1(t), v2(t), · · · , vm(t))T ∈ PC[[a, b), Rm]) satisfies the
following integro-differential inequalities with the initial condition u(a+s) ∈ PCn

and v(a+ s) ∈ PCm:




D+ui(t) ≤ −riui(t) +
m∑

j=1

pijvj(t) +
m∑

j=1

qij
∫ +∞
0

|Kij(s)|vj(t− s)ds,

D+vj(t) ≤ −r̄jvj(t) +
n∑

i=1

p̄jiui(t) +
n∑

i=1

q̄ji
∫ +∞
0

|K̄ji(s)|ui(t− s)ds,

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, where ri > 0, pij > 0, qij > 0, r̄j > 0, p̄ji >
0, q̄ji > 0, i = 1, 2, · · · , n, j = 1, 2, · · · ,m. If the initial conditions satisfies

{
u(s) ≤ κξe−λ(s−a), s ∈ (−∞, a],

v(s) ≤ κηe−λ(s−a), s ∈ (−∞, a],

where λ > 0, ξ = (ξ1, ξ2, · · · , ξn)T > 0 and η = (η1, η2, · · · , ηm)T > 0 satisfy




(λ− ri)ξi +
m∑

j=1

(pij + qijkij(λ))ηj < 0, i = 1, 2, · · · , n,

(λ− r̄j)ηj +
n∑

i=1

(p̄ji + q̄jik̄ji(λ))ξi < 0, j = 1, 2, · · · ,m.

Then {
u(t) ≤ κξe−λ(t−a), t ∈ [a, b),

v(t) ≤ κηe−λ(t−a), t ∈ [a, b).

The proof of Lemma 2 is perfectly similar to the proof of Lemma 2 in [26].
Here, we omit it.

3. Main results

Theorem 1. Under assumptions (H1)-(H3), if the following conditions hold:

(C1) There exist vectors ξ = (ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0
and positive number λ > 0 such that





(λ− ai)ξi +
m∑

j=1

[
|aij |+ (|αij |+ |α̃ij |)kij(λ)

]
Gjηj < 0, i = 1, 2, · · · , n,

(λ− bj)ηj +
n∑

i=1

[
|bji|+ (|βji|+ |β̃ji|)k̄ji(λ)

]
Fiξi < 0. j = 1, 2, · · · ,m;

(C2) µ = sup
k∈N

{
lnµk

tk−tk−1

}
< λ, where µk = max

1≤i≤n,1≤j≤m
{1, γik, γ̄jk}, k ∈ N ;

then system (1) has exactly one globally exponentially stable equilibrium point,
and its exponential convergence rate equals λ− µ.

Proof. Let h(x1, · · · , xn, y1, · · · , ym) = (h1, · · · , hn, h1, · · · , hm)T , where




hi = aixi −
m∑

j=1

aijgj(yj)−
m∧

j=1

αijkij(0)gj(yj)−
m∨

j=1

α̃ijkij(0)gj(yj)− Ĩi,

hj = bjyj −
n∑

i=1

bjifi(xi)−
n∧

i=1

βjik̄ji(0)fi(xi)−
n∨

i=1

β̃jik̄ji(0)fi(xi)− J̃j



Global exponential stability of BAM fuzzy cellular neural networks 217

for i = 1, 2, · · · , n; j = 1, 2, · · · ,m, and





Ĩi =
m∑
j=1

ãijvj + Ii +
m∧
j=1

Tijvj +
m∨
j=1

Hijvj , i = 1, 2, · · · , n,

J̃j =
n∑

i=1

b̃jiui + Jj +
n∧

i=1

T̄jiui +
n∨

i=1

H̄jiui, j = 1, 2, · · · ,m.

Obviously, from assumption (H2), the equilibrium points of model (2) are the
solutions of system of equations:

{
hi = 0, i = 1, 2, · · · , n,
hj = 0, j = 1, 2, · · · ,m.

(4)

Define the following homotopic mapping:

H(x1, · · · , xn, y1, · · · , ym) = θh(x1, · · · , xn, y1, · · · , ym) + (1− θ)(x1, · · · , xn, y1, · · · , ym)T ,

where θ ∈ [0, 1]. Let Hk(k = 1, 2, · · · , n + m) denote the kth component of
H(x1, · · · , xn, y1, · · · , ym), then from assumption (H1) and Lemma 2, we have





|Hi| ≥ [1 + θ(ai − 1)]|xi| − θ

m∑
j=1

[
|aij |+ (|αij |+ |α̃ij |)kij(0)

]
Gj |yj |

− θ

m∑
j=1

[
|aij |+ (|αij |+ |α̃ij |)kij(0)

]
|gj(0)| − θ|Ĩi|,

|Hn+j | ≥ [1 + θ(bj − 1)]|yj | − θ

n∑
i=1

[
|bji|+ (|βji|+ |β̃ji|)k̄ji(0)

]
Fi|xi|

− θ

n∑
i=1

[
|bji|+ (|βji|+ |β̃ji|)k̄ji(0)

]
|fi(0)| − θ|J̃j |

(5)

for i ∈ 1, 2, · · · , n, j ∈ 1, 2, · · · ,m. Denote

H̄ = (|H1|, |H2|, · · · , |Hn+m|)T , z = (|x1|, · · · , |xn|, |y1|, · · · , |ym|)T
C = diag(a1, · · · , an, b1, · · · , bm), L = diag(F1, · · · , Fn, G1, · · · , Gm),

P = (|Ĩ1|, · · · , |Ĩn, |, |J̃1|, · · · , |J̃m|)T , Q = (|f1(0)|, · · · , |fn(0)|, |g1(0)|, · · · , |gm(0)|)T ,
A =

(
|aij |+ (|αij |+ |α̃ij |)kij(0)

)
n×m

, B =
(
|bji|+ (|βji|+ |β̃ji|)k̄ji(0)

)
m×n

,

T =

(
0 A
B 0

)
, ω = (ξ1, · · · , ξn, η1, · · · , ηm)T > 0.

Then the matrix form of (5) is

H̄ ≥ [E+θ(C−E)]z−θTLz−θ(P +TQ) = (1−θ)z+θ[(C−TL)z− (P +TQ)].
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Since condition (C1) holds, and kij(λ), k̄ji(λ) are continuous on [0, δ), when
λ = 0 in (C1), we obtain





−aiξi +

m∑

j=1

[
|aij |+ (|αij |+ |α̃ij |)kij(0)

]
Gjηj < 0, i = 1, 2, · · · , n,

−bjηj +

n∑

i=1

[
|bji|+ (|βji|+ |β̃ji|)k̄ji(0)

]
Fiξi < 0, j = 1, 2, · · · ,m.

or in matrix form,

(−C + TL)ω < 0. (6)

It is easy to know from (6) that C−TL is a non-singularM -matrix, so (C−TL)−1

is a non-negative matrix. Let

Γ =
{
z = (x1, · · · , xn, y1, · · · , ym)T

∣∣∣ z ≤ ω + (C − TL)−1(P + TQ)
}
,

then Γ is non-empty, and from (5), we know for any z = (x1, · · · , xn, y1, · · · , ym)T

∈ ∂Γ,

H̄ ≥ (1− θ)z + θ(C − TL)[z − (C − TL)−1(P + TQ)]

= (1− θ)[ω + (C − TL)−1(P + TQ)] + θ(C − TL)ω > 0, θ ∈ [0, 1].

Therefore, for any (x1, · · · , xn, y1, · · · , ym)T ∈ ∂Γ and θ ∈ [0, 1], we have H 6= 0.
From homotopy invariance theorem [27], we get

deg(h,Γ, 0) = deg(H,Γ, 0) = 1,

by topological degree theory, we know that (4) has at least one solution in Γ.
That is, system (2) has at least an equilibrium point. This implies that system
(1) has also at least an equilibrium point.

Let (x∗
1, · · · , x∗

n, y
∗
1 , · · · , y∗m)T be an equilibrium point of system (1), (x1(t), · · · ,

xn(t), y1(t), · · · , ym(t))T is any solution of system (1) with the initial conditions
(φ(s), ϕ(s))T . Now let x̄i(t) = xi(t)− x∗

i , i = 1, 2, · · · , n, ȳj(t) = yj(t)− y∗j , j =
1, 2, · · · ,m. It is easy to see that system (1) can be transformed into the follow-
ing system




˙̄xi(t) = −aix̄i(t) +
m∑

j=1

aij

(
gj(ȳj(t) + y∗

j ) − gj(y
∗
j )
)
−

m∧
j=1

αij

+∞∫
0

Kji(s)gj(y
∗
j )ds

+
m∧

j=1

αij

+∞∫
0

Kij(s)gj(ȳj(t − s) + y∗
j )ds −

m∨
j=1

α̃ij

+∞∫
0

Kij(s)gj(y
∗
j )ds

+
m∨

j=1

α̃ij

+∞∫
0

Kij(s)gj(ȳj(t − s) + y∗
j )ds, t 6= tk,

x̄i(t
+
k
) = P̃ik(x̄i(t

−
k
)), k ∈ N

(7 − 1)
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



˙̄yj(t) = −bj ȳj(t) +
n∑

i=1

bji
(
fi(x̄i(t) + x∗

i ) − fi(x
∗
i )
)
−

n∧
i=1

βji

+∞∫
0

K̄ji(s)fi(x
∗
i )ds

+

n∧
i=1

βji

+∞∫
0

K̄ji(s)fi(x̄i(t − s) + x∗
i )ds −

n∨
i=1

β̃ji

+∞∫
0

K̄ij(s)fi(x
∗
i )ds

+

n∨
i=1

β̃ji

+∞∫
0

K̄ij(s)fi(x̄i(t − s) + x∗
i )ds, t 6= tk

ȳj(t
+
k
) = Q̃jk(yj(t

−
k
)), k ∈ N,

(7 − 2)

where P̃ik(x̄i(t)) = P̄ik(x̄i(t) + x∗
i )− P̄ik(x

∗
i ), Q̃jk(ȳj(t)) = Q̄jk(ȳj(t) + y∗j )−

Q̄jk(y
∗
j ), and the initial conditions of (7) are

{
φ̃(s) = x(s)− x∗ = φ(s)− x∗, s ∈ (−∞, 0],
ϕ̃(s) = y(s)− y∗ = ϕ(s)− y∗, s ∈ (−∞, 0].

From (H1) and Lemma 2, we calculate the upper right derivative along the
solutions of first equation and third equation of (7), we can obtain





D+|x̄i(t)| ≤ −ai|x̄i(t)|+
m∑
j=1

|aij |Gj |ȳj(t)|

+
m∑
j=1

(|αij |+ |α̃ij |)Gj

∫ +∞
0

|Kij(s)||ȳj(t− s)|ds,

D+|ȳj(t)| ≤ −bj |ȳj(t)|+
n∑

i=1

|bji|Fi|x̄i(t)|

+
n∑

i=1

(|βji|+ |β̃ji|)Fi

∫ +∞
0

|K̄ji(s)||x̄i(t− s)|ds

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m.
Let ui(t) = |x̄i(t)|, vj(t) = |ȳj(t)|, ri = ai, pij = |aij |Gj , qij = (|αij | +

|α̃ij |)Gj , r̄j = bj , p̄ji = |bji|Fi, q̄ji = (|βji| + |β̃ji|)Fi (i = 1, 2, · · · , n; j =
1, 2, · · · ,m), then we have





D+ui(t) ≤ −riui(t) +
m∑
j=1

pijvj(t) +
m∑
j=1

qij
∫ +∞
0

|Kij(s)|vj(t− s)ds,

D+vj(t) ≤ −r̄jvj(t) +
n∑

i=1

p̄jiui(t) +
n∑

i=1

q̄ji
∫ +∞
0

|K̄ji(s)|ui(t− s)ds,
(8)

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m, and from (C1), there exist vectors ξ =
(ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0 and positive number λ > 0 such
that





(λ− ri)ξi +
m∑
j=1

[
pij + qijkij(λ)

]
Gjηj < 0, i = 1, 2, · · · , n,

(λ− r̄j)ηj +
n∑

i=1

[
p̄ji + q̄jik̄ji(λ)

]
Fiξi < 0. j = 1, 2, · · · ,m.

(9)



220 Kelin Li and Liping Zhang

Taking ‖φ̃‖+‖ϕ̃‖
min

1≤i≤n,1≤j≤m
{ξi,ηj} , it is easy to prove that

{
u(t) ≤ κξe−λt, −∞ ≤ t ≤ 0 = t0,
v(t) ≤ κηe−λt, −∞ ≤ t ≤ 0 = t0.

(10)

From Lemma 2, we obtain that
{

u(t) ≤ κξe−λt, t0 ≤ t < t1,
v(t) ≤ κηe−λt, t0 ≤ t < t1.

(11)

Suppose that for l ≤ k, the inequalities
{

u(t) ≤ κµ0µ1 · · ·µl−1ξe
−λt, tl−1 ≤ t < tl,

v(t) ≤ κµ0µ1 · · ·µl−1ηe
−λt, tl−1 ≤ t < tl.

(12)

hold, where µ0 = 1. When l = k + 1, we note that

u(tk) = |P̃k(u(t
−
k ))| ≤ Γku(t

−
k ) ≤ κµ0µ1 · · ·µk−1Γkξ lim

t→t−
k

e−λt

≤ κµ0µ1 · · ·µk−1µkξe
−λtk ,

(13)

and

v(tk) = |Q̃k(v(t
−
k ))| ≤ Γ̄kv(t

−
k ) ≤ κµ0µ1 · · ·µk−1Γ̄kη lim

t→t−
k

e−λt

≤ κµ0µ1 · · ·µk−1µkηe
−λtk .

(14)

From (13), (14) and µk ≥ 1, we have
{

u(t) ≤ κµ0µ1 · · ·µk−1µkξe
−λt, −∞ ≤ t ≤ tk,

v(t) ≤ κµ0µ1 · · ·µk−1µkηe
−λt, −∞ ≤ t ≤ tk.

(15)

Combining (8),(9),(15) and Lemma 2, we obtain that
{

u(t) ≤ κµ0µ1 · · ·µkξe
−λt, tk ≤ t < tk+1,

v(t) ≤ κµ0µ1 · · ·µkηe
−λt, tk ≤ t < tk+1.

(16)

Applying the mathematical induction, we can obtain the following inequalities
{

u(t) ≤ κµ0µ1 · · ·µkξe
−λt, t ∈ [tk, tk+1), k ∈ N,

v(t) ≤ κµ0µ1 · · ·µkηe
−λt, t ∈ [tk, tk+1), k ∈ N.

(17)

According to (C2), we have µk ≤ eµ(tk−tk−1) < eλ(tk−tk−1), so we have

u(t) ≤ κeµt1eµ(t2−t1) · · · eµ(tk−1−tk−2)ξe−λt = κξeµtk−1e−λt ≤ κξe−(λ−µ)t,

and

v(t) ≤ κeµt1eµ(t2−t1) · · · eµ(tk−1−tk−2)ηe−λt = κηeµtk−1e−λt ≤ κηe−(λ−µ)t,

for t ∈ [tk−1, tk), k ∈ N . That is
{

u(t) ≤ κξe−(λ−µ)t, t ∈ (−∞, tk), k ∈ N,
v(t) ≤ κηe−(λ−µ)t, t ∈ (−∞, tk), k ∈ N.

(18)
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It follows that
n∑

i=1

|xi(t)− x∗
i |+

m∑
j=1

|yj(t)− y∗j | =
n∑

i=1

ui(t) +

m∑
j=1

vj(t)

≤
n∑

i=1

κξie
−(λ−µ)t +

m∑
j=1

κηje
−(λ−µ)t

=

∑n

i=1
ξi +

∑m

j=1
ηj

min
1≤i≤n,1≤j≤m

{ξi, ηj} (‖φ̃‖+ ‖ϕ̃‖)e−(λ−µ)t

=

∑n

i=1
ξi +

∑m

j=1
ηj

min
1≤i≤n,1≤j≤m

{ξi, ηj}
(
‖φ− x∗‖+ ‖ϕ− y∗‖

)
e−(λ−µ)t.

Let M =

∑n

i=1
ξi+

∑m

j=1
ηj

min
1≤i≤n,1≤j≤m

{ξi,ηj} , then we have

‖x(t)− x∗‖+ ‖y(t)− y∗‖ ≤ M
(
‖φ− x∗‖+ ‖ϕ− y∗‖

)
e−(λ−µ)t.

¤

Remark 1. In Theorem 1, the parameters µk and µ depend on the impulsive
disturbance of system (1), and λ is actually an estimate of exponential conver-
gence rate of continuous system (2), which depends on the delay kernel functions
and system parameters. In order to obtain more precise estimate of the expo-
nential convergence rate of system (1) (or system (2)), we suggest the following
optimization problem.

(OP )

{
maxλ,
s.t. (C1)holds,

Remark 2. Note that Lemma 2 transforms the fuzzy AND (
∧
) and the fuzzy

OR (
∨
) operation into the SUM operation (

∑
). So above results can be ap-

plied to the following classical BAM neural networks with distributed delays and
impulses:





ẋi(t) = −aixi(t) +
m∑
j=1

aijgj(yj(t))

+
m∑
j=1

αij

+∞∫
0

Kij(s)gj(yj(t− s))ds+ Ii, t 6= tk

xi(t
+) = xi(t

−) + Pik(xi(t
−)), t = tk, k ∈ N,

ẏj(t) = −bjyj(t) +
n∑

i=1

bjifi(xi(t))

+
n∑

i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t− s))ds+ Jj , t 6= tk

yj(t
+) = yj(t

−) +Qjk(yj(t
−)), t = tk, k ∈ N

(19)

for i = 1, 2, · · · , n; j = 1, 2, · · · ,m.
For system (19), it is easy to obtain the following result:
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Theorem 2. Under assumptions (H1)-(H3), if the following conditions hold:

(C1′) There exist vectors ξ = (ξ1, ξ2, · · · , ξn)T > 0, η = (η1, η2, · · · , ηm)T > 0
and positive number λ > 0 such that




(λ− ai)ξi +
m∑
j=1

(
|aij |+ |αij |kij(λ)

)
Gjηj < 0, i = 1, 2, · · · , n,

(λ− bj)ηj +
n∑

i=1

(
|bji|+ |βji|k̄ji(λ)

)
Fiξi < 0. j = 1, 2, · · · ,m;

(C2) µ = sup
k∈N

{
lnµk

tk−tk−1

}
< λ, where µk = max

1≤i≤n,1≤j≤m
{1, γik, γ̄jk}, k ∈ N ;

then system (19) has exactly one globally exponentially stable equilibrium point,
and its exponential convergence rate equals λ− µ.

Remark 3. If we assume that

(C2′) the impulsive operators Iik(xi(t
−
k )) and Ījk(yj(t

−
k )) satisfy [21-24]

{
Iik(xi(t

−
k )) = −δik(xi(t

−
k )− x∗

i ), 0 < δik < 2, i = 1, 2, · · · , n, k ∈ N,
Īik(yj(t

−
k )) = −δ̄jk(yj(t

−
k )− y∗j ), 0 < δ̄jk < 2, j = 1, 2, · · · ,m, k ∈ N.

Then from (H3), we easily obtain γik = |1 − δik| < 1 and γ̄jk = |1 − δ̄jk| < 1.
It follows that µk = max

1≤i≤n,1≤j≤m
{1, γik, γ̄jk} = 1, k ∈ N , which implies µ =

lnµk

tk−tk−1
= 0 < λ. From Remark 1, we know that the stability of the continuous

system can guarantee the stability of the corresponding impulsive system when
the impulsive operators satisfy (C2′). Hence, the assumptions about the impul-
sive operator in [21-24] are conservative and restrictive. In addition, all results
in [22, 23] are involved in Theorem 2.

4. An illustrative example

In order to illustrate the feasibility of our above-established criteria in the
preceding sections, we provide a concrete example. Although the selection of
the coefficients and functions in the example is somewhat artificial, the possible
application of our theoretical theory is clearly expressed.

Example 1. Consider the following BAM fuzzy neural networks with distributed
delays and impulses:




ẋi(t) = −aixi(t) +
2∑

j=1

aijgj(yj(t)) +
2∑

j=1

ãijvj + Ii

+
2∧

j=1

αij

+∞∫
0

Kij(s)gj(yj(t− s))ds

+
2∨

j=1

α̃ij

+∞∫
0

Kij(s)gj(yj(t− s))ds

+
2∧

j=1

Tijvj +
2∨

j=1

Hijvj , t 6= tk

xi(t
+) = xi(t

−)−
(
1 + e0.125k

)
(xi(t

−)− 1), t = tk, k ∈ N,

(20− 1)
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



ẏj(t) = −bjyj(t) +
2∑

i=1

bjifi(xi(t)) +
2∑

i=1

b̃jiui + Jj

+
2∧

i=1

βji

+∞∫
0

K̄ji(s)fi(xi(t− s))ds

+
2∨

i=1

β̃ji

+∞∫
0

K̄ij(s)fi(xi(t− s))ds

+
2∧

i=1

T̄jiui +
2∨

i=1

H̄jiui, t 6= tk

yj(t
+) = yj(t

−)−
(
1 + e0.125k

)
(yj(t

−)− 1), t = tk, k ∈ N,

(20− 2)

for i = 1, 2, j = 1, 2, t > 0, t0 = 0, tk = tk−1 + 0.5k, k ∈ N , where

a1 = 3, a2 = 3, a11 = 4
3 , a12 = − 1

2 , a21 = 1
2 , a22 = 2

3 ,
ã11 = 1, ã12 = −2, ã21 = −2, ã22 = 1, I1 = 49

12 , I2 = − 37
12 ,

α11 = 1
3 , α12 = − 1

4 , α21 = 1
4 , α22 = 2

3 , α̃11 = 1
3 , α̃12 = 1

4 ,
α̃21 = − 1

4 , α̃22 = 2
3 , T11 = 1, T12 = 0, T21 = 0, T22 = 1,

H11 = 1, H12 = 0, H21 = 0, H22 = 1, v1 = 1, v2 = 2;
b1 = 3, b2 = 3, b11 = 1

3 , b12 = − 2
3 , b21 = 4

3 , b22 = 1
3 ,

b̃11 = 1, b̃12 = 3, b̃21 = 2, b̃22 = −2, J1 = − 7
4 , J2 = 0,

β11 = 1
3 , β12 = − 1

6 , β21 = 1
3 , β22 = 1

3 , β̃11 = 1
3 , β̃12 = 1

6

β̃21 = 1
3 β̃22 = 1

3 , T̃11 = 1, T̃12 = 0, T̃21 = 0, T̃22 = 1,

H̃11 = 1, H̃12 = 0, H̃21 = 0, H̃22 = 1, u1 = 1, u2 = 1;

Kij(s) = e−s, K̄ij(s) = e−2s, fi(s) = gj(s) =
|s+1|−|s−1|

2 , i, j = 1, 2.

From above parameters, we have F1 = F2 = 1, G1 = G2 = 1,

(kij(λ))2×2 =

( 1
1−λ

1
1−λ

1
1−λ

1
1−λ

)
, (k̄ji(λ))2×2 =

( 1
2−λ

1
2−λ

1
2−λ

1
2−λ

)
,

Γk =

(
e0.125k

e0.125k

)
, Γ̄k =

(
e0.125k

e0.125k

)

Solving the following optimization problem



maxλ

(λ − a1)ξ1 +
(
|a11| + (|α11| + |α̃11|)k11(λ)

)
G1η1 +

(
|a12| + (|α12| + |α̃12|)k12(λ)

)
G2η2 < 0,

(λ − a2)ξ1 +
(
|a21| + (|α21| + |α̃21|)k21(λ)

)
G1η1 +

(
|a22| + (|α22| + |α̃22|)k22(λ)

)
G2η2 < 0,

(λ − b1)η1 +
(
|b11| + (|β11| + |β̃11|)k̄11(λ)

)
F1ξ1 +

(
|b12| + (|β12| + |β̃12|)k̄12(λ)

)
F2ξ2 < 0,

(λ − b2)η2 +
(
|b21| + (|β21| + |β̃21|)k̄21(λ)

)
F1ξ1 +

(
|b22| + (|β22| + |β̃22|)k̄22(λ)

)
F2ξ2 < 0,

λ > 0, ξ = (ξ1, ξ2)
T > 0, η = (η1, η2)

T > 0,

we get λ ≈ 0.303 > 0, ξ = (1082041, 1327618)T > 0 and η = (716212, 1050021)T > 0,

so (C1) holds. From Theorem 1, we know system (20) has a unique equilibrium
point, this equilibrium point is (1, 1, 1, 1)T . Also,

µk = max
1≤i≤2,1≤j≤2

{1, γik, γ̄jk} = e0.125k,

µ = sup
k∈N

lnµk

tk − tk−1
=

0.125k

0.5k
= 0.25 < 0.303 = λ.
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That is, (C2) holds. From Theorem 1, the unique equilibrium point (1, 1, 1, 1)T

of system (20) is globally exponentially stable, and its exponential convergence
rate is about 0.053.

5. Conclusions

In this paper, a class of BAM fuzzy cellular neural networks with distributed
delays and impulses has been formulated and investigated. Some new criteria
on the existence and global exponential stability of equilibrium point for the for-
mulated networks have been derived by using the topological degree theory and
the impulsive delay integro-differential inequality. The obtained stability crite-
ria are delay-dependent and impulse-dependent. The neuronal output activation
functions and the impulsive operators only need to is Lipschitz continuous, but
need not to be bounded and monotonically increasing. Some restrictions of delay
kernel functions are also removed. It is worthwhile to mention that our technical
methods are practical, in the sense that all new stability conditions are stated
in simple algebraic forms and provided a more precise estimate of the exponen-
tial convergence rate, so their verification and applications are straightforward
and convenient. The effectiveness of our results has been demonstrated by the
convenient numerical example.

References

1. T. Yang, L. Yang, C. Wu, L. Chua, Fuzzy celluar neural networks: Theory, in: Proceedings
of IEEE International Workshop on Cellular Neural Networks and Applications (1996),
181-186.

2. T. Yang, L. Yang, The global stability of fuzzy celluar neural networks, IEEE Trans. Cric.
Syst. I 43 (1996), 880-883.

3. Y. Liu, W. Tang, Exponential stability of fuzzy cellular neural networks with constant and
time-varying delays, Phys. Lett. A 323(2004), 224-233.

4. K. Yuan, J. Cao, J. Deng, Exponential stability and periodic solutions of fuzzy cellular
neural networks with time-varying delays, Neurocomputing 69 (2006), 1619-1627.

5. T. Huang, Exponential stability of fuzzy cellular neural networks with distributed delay,
Phys. Lett. A 351 (2006), 48-52.

6. K. Li, Global exponential stability of impulsive fuzzy cellular neural networks with delays
and diffusion, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 19 (2009), 245-261.

7. K. Li, Q. Song, Stability analysis of Bam fuzzy neural networks with distributed delays
and reaction-diffusion terms, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 16
(2009), 375-396.

8. Z. Li, K. Li, Stability analysis of impulsive fuzzy cellular neural networks with distributed
delays and reaction-diffusion terms, Chaos, Solitons and Fractals 42 (2009), 492-499.

9. Q. Song, J. Cao, Dynamical behaviors of discrete-time fuzzy cellular neural networks with
variable delays and impulses, Journal of the Franklin Institute 345 (2007), 39-59.

10. Q. Zhang, R. Xiang, Global asymptotic stability of fuzzy cellular neural networks with
time-varying delays, Phys. Lett. A 372 (2008), 3971-3977.

11. S. Niu, H. Jiang, Zhidong Teng, Exponential stability and periodic solutions of FCNNs
with variable coefficients and time-varying delays, Neurocomputing 71 (2008), 2929-2936.

12. X. Wang, D. Xu, Global exponential stability of impulsive fuzzy cellular neural networks
with mixed delays and reaction-diffusion terms, Chaos, Solitons & Fractals 42 (2009),
2713-2721.



Global exponential stability of BAM fuzzy cellular neural networks 225

13. Q. Zhang, X. Tang, Global exponential stability of fuzzy BAM neural networks with trans-
mission delays, Journal of Applied Mathematics and Computing 32 (2010), 417-427.

14. Q. Zhang, W. Luo, Global exponential stability of fuzzy BAM neural networks with time-
varying delays, Chaos, Solitons & Fractals 42 (2009), 2239-2245.

15. Y. Xia, Z. Yang, M. Han, Lag synchronization of chaotic delayed Yang-Yang type fuzzy
neural networks with noise perturbation based on adaptive control and parameter identi-
fication, IEEE Trans. Neural Networks 20 (2009), 1165-1180.

16. Y. Xia, Z. Yang, M. Han, Synchronization schemes for coupled identical Yang-Yang type
fuzzy cellular neural networks, Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), 3645-
3659.

17. B. Kosko, Adaptive bi-directional associative memories. Appl Opt. 26 (1987), 4947-4960.
18. B. Kosko, Bi-directional associative memories, IEEE Trans. Syst. Man. Cybern. 18 (1988),

49-60.
19. X. Liao, K. Wong, S. Yang, Convergence dynamics of hybrid bidirectional associative

memory neural networks with distributed delays. Phys. Lett. A 316 (2003), 55-64.
20. Q. Song, J. Cao, Global exponential stability of bidirectional associative memory neural

networks with distributed delays, J. Comput. Appl. Math. 202 (2007), 266-279.
21. Y. Li, Global exponential stability of BAM neural networks with delays and impulses,

Chaos, Solitions & Fractals 24 (2005), 279-285.
22. Y. Li, C. Yang, Global exponential stability analysis on impulsive BAM neural networks

with distributed delays, J. Math. Anal. Appl. 324 (2006), 1125-1139.
23. B. Liu, L. Huang, Global exponential stability of BAM neural networks with recent-history

distributed delays and impulses. Neurocomputing 69 (2006), 2090-2096.
24. Z. Huang, X. Luo, Q. Yang, Global asymptotic stability analysis of bidirectional associative

memory neural networks with distributed delays and impulse, Chaos, Solitons & Fractals
34 (2007), 878-885.

25. Q. Zhou, Global exponential stability of BAM neural networks with distributed delays and
impulses, Nonlinear Analysis: Real World Applications 10 (2009), 144-153.

26. K. Li, Delay-dependent stability analysis for impulsive BAM neural networks with time-
varying delays, Comput. Math. Appl. 56 (2008), 2088-2099.

27. J. Cronin, Fixed Points and Topological Degree in Nonlinear Analysis, American Mathe-
matical Society, Providence, RI, 1964.

Kelin Li received the B.S. degree in Mathematics in 1984 from Sichuan normal university,
Sichuan, China. From July, 1984 to March, 2004, he worked in Zigong Teacher’s College,
and obtained associate professor in 1997. Since March, 2004, he has been working in
Sichuan University of Science & Engineering, Sichuan, China. He is currently a Professor
at Sichuan University of Science & Engineering. He is the author or coauthor of more than
15 journal papers and one edited book. His current research interests include nonlinear
system, neural network, stability theory and applied mathematics.

School of Science, Sichuan University of Science & Engineering, Sichuan 643000, China.
e-mail: lkl@suse.edu.cn

Liping Zhang received the B.S. degree in Mathematics in 1986 from Sichuan university,
Sichuan, China. From July, 1986 to March, 2004, she was with the department of mathe-
matics, Zigong Teacher’s College, and obtained associate professor in 2000. Since March,
2004, she has been working in Sichuan University of Science & Engineering, Sichuan, China.
She is currently a associate Professor at Sichuan University of Science & Engineering. Her
current research interests include neural network and stability theory.

School of Science, Sichuan University of Science & Engineering, Sichuan 643000, China.
e-mail: zhangliping999@suse.edu.cn


