• Title/Summary/Keyword: fuzzy-neural networks

Search Result 602, Processing Time 0.028 seconds

Inference System Fusing Rough Set Theory and Neuro-Fuzzy Network (Rough Set Theory와 Neuro-Fuzzy Network를 이용한 추론시스템)

  • Jung, Il-Hun;Seo, Jae-Yong;Yon, Jung-Heum;Cho, Hyun-Chan;Jeon, Hong-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.9
    • /
    • pp.49-57
    • /
    • 1999
  • The fusion of fuzzy set theory and neural networks technologies have concentrated on applying neural networks to obtain the optimal rule bases of fuzzy logic system. Unfortunately, this is very hard to achieve due to limited learning capabilities of neural networks. To overcome this difficulty, we propose a new approach in which rough set theory and neuro-fuzzy fusion are combined to obtain the optimal rule base from input/output data. Compared with conventional FNN, the proposed algorithm is considerably more realistic because it reduces overlapped data when construction a rule base. This results are applied to the construction of inference rules for controlling the temperature at specified points in a refrigerator.

  • PDF

An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks (점증적 학습 퍼지 신경망을 이용한 적응 분류 모델)

  • Rhee, Hyun-Sook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.736-741
    • /
    • 2006
  • The design of a classification system generally involves data acquisition module, learning module and decision module, considering their functions and it is often an important component of intelligent systems. The learning module provides a priori information and it has been playing a key role for the classification. The conventional learning techniques for classification are based on a winner take all fashion which does not reflect the description of real data where boundarues might be fuzzy Moreover they need all data for the learning of its problem domain. Generally, in many practical applications, it is not possible to prepare them at a time. In this paper, we design an adaptive classification model using incremental training fuzzy neural networks, FNN-I. To have a more useful information, it introduces the representation and membership degree by fuzzy theory. And it provides an incremental learning algorithm for continuously gathered data. We present tie experimental results on computer virus data. They show that the proposed system can learn incrementally and classify new viruses effectively.

A Novel Soft Computing Technique for the Shortcoming of the Polynomial Neural Network

  • Kim, Dongwon;Huh, Sung-Hoe;Seo, Sam-Jun;Park, Gwi-Tae
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.2
    • /
    • pp.189-200
    • /
    • 2004
  • In this paper, we introduce a new soft computing technique that dwells on the ideas of combining fuzzy rules in a fuzzy system with polynomial neural networks (PNN). The PNN is a flexible neural architecture whose structure is developed through the modeling process. Unfortunately, the PNN has a fatal drawback in that it cannot be constructed for nonlinear systems with only a small amount of input variables. To overcome this limitation in the conventional PNN, we employed one of three principal soft computing components such as a fuzzy system. As such, a space of input variables is partitioned into several subspaces by the fuzzy system and these subspaces are utilized as new input variables to the PNN architecture. The proposed soft computing technique is achieved by merging the fuzzy system and the PNN into one unified framework. As a result, we can find a workable synergistic environment and the main characteristics of the two modeling techniques are harmonized. Thus, the proposed method alleviates the problems of PNN while providing superb performance. Identification results of the three-input nonlinear static function and nonlinear system with two inputs will be demonstrated to demonstrate the performance of the proposed approach.

Neural Fuzzy Mold Level Control for Continuous Steel Casting

  • Lim, Chang-Gyoon;Kueon, Yeong-Seob;Kim, Yigon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.2
    • /
    • pp.146-152
    • /
    • 2002
  • Mold level control has been a major control task for continuous casting plants. The system involves nonlinearities such as stick-slip friction in the sliding gate, time-delay, friction force variations between molten steel and the inner wall of mold, and nozzle logging/unclogging. These complex problems should be solved to control mold level for steel cast. In this paper, we propose a neural fuzzy mold level control technique for solving these complex problems and give experiment studies to show the mold level control in continuous casting process.

Fuzzy ART Neural Network-based Approach to Recycling Cell Formation of Disposal Products (Fuzzy ART 신경망 기반 폐제품의 리싸이클링 셀 형성)

  • 서광규
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.187-197
    • /
    • 2004
  • The recycling cell formation problem means that disposal products are classified into recycling product families using group technology in their end-of-life phase. Disposal products have the uncertainties of product condition usage influences. Recycling cells are formed considering design, process and usage attributes. In this paper, a new approach for the design of cellular recycling system is proposed, which deals with the recycling cell formation and assignment of identical products concurrently. Fuzzy ART neural networks are applied to describe the condition of disposal product with the membership functions and to make recycling cell formation. The approach leads to cluster materials, components, and subassemblies for reuse or recycling and can evaluate the value at each cell of disposal products. Disposal refrigerators are shown as an example.

The Digital Fuzzy Inference System Using Neural Networks

  • Ryeo, Ji-Hwan;Chung, Ho-Sun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.968-971
    • /
    • 1993
  • Fuzzy inference system which inferences and processes the Fuzzy information is designed using digital voltage mode neural circuits. The digital fuzzification circuit is designed to MIN,MAX circuit using CMOS neural comparator. A new defuzzification method which uses the center of area of the resultant fuzzy set as a defuzzified output is suggested. The method of the center of area(C. O. A) search for a crisp value which is correspond to a half of the area enclosed with inferenced membership function. The center of area defuzzification circuit is proposed. It is a simple circuit without divider and multiflier. The proposed circuits are verified by implementing with conventional digital chips.

  • PDF

Fuzzy Rule Identification System using Artifical Neural Networks (인공신경망을 이용한 퍼지 규칙 인식 시스템)

  • Jang, Mun-Seok;Jang, Deok-Cheol
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.2
    • /
    • pp.209-214
    • /
    • 1995
  • It is very hard to identify the fuzzy rules and tune the membership functions of the fuzzy reasoning in fuzzy systems modeling .We propose a method which canautomatically identify the fuzzy rules and tune the membership functions of fuzzy reasoning simultaneously using artifical neural network. In this model,fuzzy rules are identified by backpropagation algorithm. The feasibility of the method is simulated by a simple robot manipulator.

  • PDF

Fault Detection of Transmission Line using Neuro-fuzzy Scheme (뉴로-퍼지기법을 이용한 송전선로의 고장검출)

  • Jeon, B.J.;Park, C.W.;Shin, M.C.;Lee, B.K.;Kweon, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1046-1049
    • /
    • 1998
  • This paper deals with the new fault detection technique for transmission line using Neuro-fuzzy Scheme. Neuro-fuzzy Scheme is ANFIS(Adaptive-network Fuzzy Inference System) based on fusion of fuzzy logic and neural networks. The proposed scheme has five layers. Each layer is the component of fuzzy Inference system and performs different action. Using learning method of neural network, fuzzy premise and consequent parameters is tuned properly.

  • PDF

A Neural Fuzzy Learning Algorithm Using Neuron Structure

  • Yang, Hwang-Kyu;Kim, Kwang-Baek;Seo, Chang-Jin;Cha, Eui-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.395-398
    • /
    • 1998
  • In this paper, a method for the improvement of learning speed and convergence rate was proposed applied it to physiological neural structure with the advantages of artificial neural networks and fuzzy theory to physiological neuron structure, To compare the proposed method with conventional the single layer perception algorithm, we applied these algorithms bit parity problem and pattern recognition containing noise. The simulation result indicated that our learning algorithm reduces the possibility of local minima more than the conventional single layer perception does. Furthermore we show that our learning algorithm guarantees the convergence.

  • PDF

A rule base derivation method using neural networks for the fuzzy logic control of robot manipulators (로봇 매니퓰레이터의 퍼지논리 제어를 위한 신경회로망을 사용한 규칙 베이스 유도방법)

  • 이석원;경계현;김대원;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.441-446
    • /
    • 1992
  • We propose a control architecture for the fuzzy logic control of robot manipulators and a rule base derivation method for a fuzzy logic controller(FLC) using a neural network. The control architecture is composed of FLC and PD(positional Derivative) controller. And a neural network is designed in consideration of the FLC's structure. After the training is finished by BP(Back Propagation) and FEL(Feedback Error Learning) method, the rule base is derived from the neural network and is reduced through two stages - smoothing, logical reduction. Also, we show the performance of the control architecture through the simulation to verify the effectiveness of our proposed method.

  • PDF