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A Novel Soft Computing Technique for the Shortcoming of the
Polynomial Neural Network

Dongwon Kim, Sung-Hoe Huh, Sam-Jun Seo, and Gwi-Tae Park

Abstract: In this paper, we introduce a new soft computing technique that dwells on the ideas
of combining fuzzy rules in a fuzzy system with polynomial neural networks (PNN). The
PNN is a flexible neural architecture whose structure is developed through the modeling
process. Unfortunately, the PNN has a fatal drawback in that it cannot be constructed for
nonlinear systems with only a small amount of input variables. To overcome this limitation in
the conventional PNN, we employed one of three principal soft computing components such
as a fuzzy system. As such, a space of input variables is partitioned into several subspaces by
the fuzzy system and these subspaces are utilized as new input variables to the PNN architec-
ture. The proposed soft computing technique is achieved by merging the fuzzy system and the
PNN into one unified framework. As a result, we can find a workable synergistic environment
and the main characteristics of the two modeling techniques are harmonized. Thus, the pro-
posed method alleviates the problems of PNN while providing superb performance. Identifi-
cation results of the three-input nonlinear static function and nonlinear system with two inputs
will be demonstrated to demonstrate the performance of the proposed approach.
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framework, polynomial neural network.

1. INTRODUCTION

System modeling is important for analysis, control,
and automation as well as scientific research. Recently,
a significant amount of attention has been directed to
advanced techniques of system modeling. When deal-
ing with high-order nonlinear and multivariable sys-
tems, a vast amount of data is required for estimating
all its parameters, which causes computational inten-
sity and requires supercomputer facilities. As a model-
ing technique, there is a group method of data han-
dling (GMDH)-type algorithm [1-8]. The GMDH al-
gorithm [1-4] introduced by Ivakhnenko in the early
1970’s is an analysis technique for identifying nonlin-
ear relationships between the inputs and outputs of a
given system. One of the GMDH-type algorithms is
the polynomial neural network (PNN) [7,8]. The PNN
provides an automated selection of essential input
variables and builds hierarchical polynomial regres-
sions as well as a partial description (PD), of required
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complexity. In addition, high-order regression often
leads to a severely ill-conditioned system of equations.
However, the PNN avoids this problem by constantly
eliminating variables at each layer. Therefore, com-
plex systems can be modeled without specific knowl-
edge of the system or a massive amount of data. It is
revealed in [7,8] that the PNN shows a superb per-
formance in comparison to the previous fuzzy model-
ing methods. However, the approximation capabilities
of the PNN are limited because of its critical handicap.
If two or three numbers of input variables are consid-
ered, the PNN cannot be constructed flexibly. The
above-mentioned problem can be solved by using the
soft computing (SC) technique. SC, an innovative ap-
proach to constructing computationally intelligent
systems, has become the center of attention. In con-
fronting real-world computing problems, it is fre-
quently advantageous to use several computing tech-
niques synergistically rather than exclusively, result-
ing in construction of complementary hybrid intelli-
gent systems. As a result, we employed one of three
principal soff computing components, fuzzy systems,
to overcome the well-known shortcoming of the con-
ventional PNN. The fuzzy modeling method is a
highly advanced technique and has been studied to
deal with complex, ill-defined and uncertain systems
in which the conventional mathematical model fails to
give satisfactory results. In the fuzzy model, there is a
premise part and a consequent part in an if-then rule.
The input space of the premise in the model is parti-



190 International Journal of Control, Automation, and Systems Vol. 2, No. 2, June 2004

tioned into several fuzzy subspaces, which is equal to
the number of fuzzy rules [9]. The number of rules
corresponds to the number of subspaces. Hence, the
input space can be partitioned according to the num-
ber of rules in the fuzzy inference system (FIS). Con-
sequently, we can deal with the critical restriction of
the PNN by using the FIS. A space of input variables
is partitioned into several subspaces by the fuzzy sys-
tem and these subspaces are utilized as new input
variables to the PNN architecture. Recently, hybrid
architectures have appeared, as shown in [23-25], as a
result of the combination of fuzzy rules, neural net-
works, FNN and PNN. But unfortunately, various ex-
periments were not conducted in [23,24]. In [25], too
many trials must be done to obtain comparable results.
Furthermore, the genetic optimization algorithm must
be applied to adjust design parameters such as leam-
ing rate, momentum term, and membership parame-
ters. As such, the structures in [25] are immense. As
can be seen from the section below, we did not em-
ploy any special optimization technique and various
experiments are examined.

In this paper, a new soft computing technique has
been investigated and a comparative study of this
technique for nonlinear system modeling is presented.
The proposed SC technique combines the fuzzy sys-
tem and PNN into one methodology. In other words,
this method is achieved by merging fuzzy systems and
polynomial neural networks in one unified framework.
As a result, we can find a workable synergistic envi-
ronment and the main characteristics of the two mod-
eling techniques are harmonized. Thus, the proposed
method provides superb performance in comparison to
the previous fuzzy modeling methods and also allevi-
ates the problems of PNN such that if small numbers
of input variables are considered, the PNN cannot be
constructed flexibly.

2. POLYNOMIAL NEURAL NETWORK AND
ITS PROBLEM DESCRIPTION

The PNN algorithm [7,8] is based on the group
method of data handing (GMDH) [1] and utilizes a
class of polynomials such as linear, quadratic, and
modified quadratic types (see Table 1). These
polynomials are referred to as partial descriptions
(PDs). By choosing the most significant input vari-
ables and polynomial types among various types of
forms available, we can obtain the PDs in each layer.
The PNN is developed to identify the model of
nonlinear complex systems by the use of the input-
output data set. This data set is divided into two parts,
that is, the training data set and the testing data set.
The total number of nodes is given by the combination
of a fixed number of inputs among entire input
variables. The number of input variables and types of
polynomials of each node are therefore determined in

selected inputs: (j-1)th layer| |order

P Il'"pa lj"q Type2

PD: j th layer
kg te !tz 4o (2 P (2 Yre ! 2!

Fig. 1. Overall architecture of the PNN.

advance by the designer. By using the chosen input
variables and type corresponding to each node, we
construct a PD for each node. We determine the
coefficients of the PD by the least square method
using a given training data set, and finally we obtain
the estimated output of each node. Furthermore, we
evaluate each PD to check its predictive capability for
the output variable using the testing data set. We then
compare these values and choose the PDs that give the
best predictive performance. In the sequel, we
construct the second layer in the same way,
considering the output variable of each chosen node in
the first layer as the new input variables for the second
layer. Afterwards, we repeat this procedure until the
termination criterion has been satisfied. Once the final
layer has been constructed, only the individual node
characterized by the best performance is selected as
the output node. The remaining nodes in that layer are
discarded. Furthermore, all the nodes in the previous
layers that have no influence over the selected output
nodes are also removed by tracing the data flow path
on each layer. Finally, the PNN model is obtained.

As an illustrative example, the overall architecture
of the PNN through the design procedure stated above
is provided in Fig. 1. In the figure, 4 input variables
(x1, ..., X4), 3 layers, and a partial description (PD)
processing example are considered. Where, 7' means
output of the ith node in the j-1th layer, which is
employed as a new input of the jth layer. Black nodes
have influence on the best node (output node) and
these networks represent the ultimate PNN model.
Meanwhile, solid line nodes have no influence over
the output.node. In addition, the dotted line nodes are
excluded in choosing PDs with the best predictive
performance in the corresponding layer owing to poor
performance. Therefore, the solid line nodes and
dotted line nodes should not be present in the final
PNN model.
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Table. 1. Different forms of the polynomials used in
the proposed method.

Type 1 : c c
Type2 | Typel 1-1 1-2 1-3
Type3 | Type2 g-1 q-2 q-3
Type4 | Type3 | mg-1 mgq-2 mg-3

¢: constants

1-2 (bilinear) = ¢y +¢X + %

g-2 (biquadratic) = bilinear+ c3x12 + c4x22 + C5x1 X
mg-2 (modified biquadratic) = bilinear +c;x x,

There are two types of PNN structures, namely the
basic and the modified structure. The basic PNN
structure consists of nodes for which the number of
input variables is identical in every layer, but in the
modified PNN structure, the number of input variables
to each node in every layer can be changed. Each type
comes with two cases, case 1 and case 2. In both
structures the order of the polynomials in the PD may
or may not vary from layer to layer. Detailed design
procedures of the PNN algorithm can be found in [7,
8]. As shown in Fig. 1, if 1 to 3 input variables are
considered, the PNN cannot construct a flexible neural
architecture. In the following section, we propose a
new soft computing technique to overcome this re-
striction, although a small number of input variables
are considered.

3. FUZZY INFERENCE SYSTEM

The fuzzy inference system (FIS) [9-11] is a popu-
lar computing framework based on the concepts of
fuzzy set theory, fuzzy if-then rules, and fuzzy reason-
ing. In this paper, we use the Sugeno fuzzy model in
which since each rule has a crisp output; the overall
output is obtained via weighted average, thus avoiding
the time-consuming process of defuzzification. When
we consider fuzzy rules in the Sugeno fuzzy model,
the consequent part can be expressed by constant or
linear, quadratic, and modified quadratic polynomials
as shown in Table 1 [10]. Depending on the types of
consequent polynomials, the modeling performance
will vary. Moreover, we can exploit various forms of
membership functions (MFs) such as triangular and
Gaussian types for fuzzy set in the premise part of the
fuzzy rules. These are additional factors contributing
to the flexibility of the proposed approach.

For simplicity, the nonlinear system to be identified
is assumed to have two input variables and each input
variable has two fuzzy sets, respectively. For the
Sugeno-fuzzy model, a common rule set is as follows:

Ar A
£44x) 1%
small big small big
1 ! ——
Xinin X max Ximin X inax
(a) Triangular MF.  (b) Gaussian MF.

Fig. 2. Type of membership function typically used in
the proposed method.

Fig. 3. ANFIS architecture that is equivalent to the
Sugeno fuzzy model.

Rule 1: If x is 4 and x; is By , then
k
=1 x)
Rule 2: If x is 4 and x, is B, , then
k
v2 = (0. x,)
Rule 3: If x is A and x, is B, , then
= £0(.x2)
Rule 4: If x is 4 and x; is By , then

k
va = 119 (0, xy)

where 4; and B; in the premise part of the rules are
linguistic values (such as “small” or “big”) associated

with input variables X and X2 , respectively.

f;k)(xpxz), (k=1, ..., 4) is one of the consequent
polynomial functions with Type K in Table 1 for the j-
th rule.

As depicted in Fig. 2, two types of membership
functions for the 4; and B; were examined, which
include triangular and Gaussian. Fig. 3 is an adaptive
neuro-fuzzy inference system (ANFIS) [11,12]
architecture that is equivalent to a two-input Sugeno
fuzzy model with four rules, where each input is
assumed to have two associated MFs. The output of
each rule, Z;(j=1, ...4), is used as an input variable

to the next PNN.
For the adaptation of parameters in ANFIS [11],



192 International Journal of Control, Automation, and Systems Vol. 2, No. 2, June 2004

ANFIS PNN

( Y r
Layer1  Layer2 Layer3 Layer4

Fig. 4. Architecture of the proposed method.

gradient descent (GD) algorithms and the recursive
least-squares estimation (RLSE) algorithm are em-
ployed for adjusting both premise and consequent pa-
rameters iteratively. However, we do not employ the
complex hybrid learning algorithm but rather the gen-
eral LSE for adjusting the coefficients in the conse-
quent polynomial function with Type K.

4. NOVEL SOFT COMPUTING TECHNIQUE

The proposed soft computing technique for the
shortcoming of the conventional PNN is presented in
this section. This architecture is obtained by
combining the ANFIS architecture with the cascade
connection PNN. The architecture of the model can be
constructed as shown in Fig. 4.

In what follows, we summarize the architecture of
the network by considering the functionality of the
individual layers.

[layer 1]: Each node i in this layer generates
membership grades of a linguistic value. For instance,
the node function of the ith node might be a Gaussian
type such as

() = exp((—)). (1)
7
where x is the input to node i, and 4; is the linguistic
value associated with this node function. ¢ and ¢ are
the MFs width and center, respectively.
[layer 2]: Every node in this layer multiplies the
incoming signals and sends the product out. For
instance,

W=y ()X g (%), =12, j=12,.4. (2)

Each node output represents the firing strength of a
rule.

[layer 3]: The jth node of this layer calculates the
ratio of the jth rules' firing strength to the sum of the
combined rules' firing strength,

W .

W= ’ (3)
W1+W2 +W3+W4 -

[layer 4]: Node j in this layer has the node function.

_ k) _ =
zj—wjfj —wj(cjo +cj]x1+cj2x2), 4)

- elk) . .
where the function of Type K fj( ) is shown in Table 1.

|layer 5 or higher}: These layers consist of several
steps. The steps are as follows;

Step 1- We define the input variables such as
X =21,X) T2p, X3 = 23,54 = 24

related to output

variable ” .

Step 2- The PNN structure is selected on the basis
of the number of input variables and the order of PDs
in each layer. Two kinds of PNN structures with two
cases can be available. One is the basic PNN structure
and the other is the modified PNN structure with Case
1 and Case 2, respectively.

Step 3- We determine the regression polynomial
structure of a PD. When r input variables are selected

from 4 input variables X, X, ..., X;in the prece-
ding layer, the total number of nodes (PDs) in the
current layer is determined by k=4Y((4-r)'r! .

Possible types of regression polynomials are contain-
ed in Table 1.

Step 4- The coefficients of the PD are determined
using standard mean squared errors (MSE).

Step 5- Each PD in the current layer is estimated
and evaluated with the training and testing data.
Starting from the PD with the smallest performance
index measured with the test data, PDs are selected by
a pre-defined number w. The outputs of the chosen
PDs serve as an input to the next layer. In this study,
the w has been set to 30 in each layer.

Step 6- The PNN algorithm terminates when the
number of layers predetermined by the designer is
reached. Here, the number of total layers has been
limited to 5.

Step 7- If the termination criterion is not satisfied,
the next layer is constructed by repeating steps 3
through 7.

5. SIMULATION RESULTS

In this section, we show the performance of our
new method for two well known types of nonlinear
system modeling. One is a three-input nonlinear
function which was studied previously in [13-17] and
the other is a nonlinear static system already exploited
in fuzzy modeling [9,18-22].

5.1. Three-input nonlinear function

We will demonstrate how the proposed approach
can be employed to model a highly nonlinear function.
The performance obtained in this example will also be
compared with the individual fuzzy system and the
PNN as well as earlier works. The function to be iden-
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Table 2. Simulation results of fuzzy system

Pl 883 011

T EPI 12.86 8.96 588.26  456.45
G P1 1030  2e-12  3e-010 3e-12
EPI 11.64 35091 15316 32.63

T: Triangular MF, G: Gaussian MF

Table 3. Simulation results of PNN and its parameters.

Pl 15.04

1 11.92
EPI 15.19 13.28 14.12
5 PI 13.90 5.90 10.17
EPI 10.42 6.44 11.64
) 3 Pi 11.93 6.54 9.70
EPI 9.26 4.92 10.84
4 PI 11.18 3.30 11.21
EPI 9.48 4.38 12.61
5 P1 12.31 2.59 9.37
EPI 10.31 8.52 13.38
3 1 Pl 12.65 5.78 9.48
EPI 11.04 6.81 12.95

tified is a three-input nonlinear system given by

1

y=(+x0 x4+ x51)2, (5)

which is widely used by Takagi and Hayashi [13],
Sugeno and Kang [14], and Kondo [15] to test their
modeling approaches. Forty pairs of input-output data
are obtained from (5) [17].

The data is divided into a training data set and a
testing data set. The training data set is used for the
identification of the model, while the testing data set
is used solely for the wverification of the identified
model. To compare the performance, the same
performance index, average percentage error (APE)
adopted in [13-17] is used.

Z‘y‘. A0 %) (©)

where m is the number of data pairs and Viand J;
are the ith actual output and model output,
respectively.

A series of comprehensive experiments was
conducted and the results have been summarized as
figures and tables. First, the fuzzy system and the
PNN are exploited for the comparison of the proposed
model, which has high accuracy and superior
generalization capabilities.

Table 2 provides simulation results of the fuzzy sys-
tem only. Triangular and Gaussian MF, and conse-
quent polynomials of fuzzy rules are considered as
modeling options. Here the FIS contains eight rules,

X
A
X ’b >y
Fig. 5. Incomplete PNN architecture when 3 inputs are
used.
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(a) Performance index for the training data.

—m—: Type 1
—e— Type 2
EPI —4&— Type 3
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Performance index
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*
o o - ——— o —— g e Y

Fuzzy PNN
(b) Performance index for the testing data.

Fig. 6. Performance index of the proposed model
(triangular MF and basic PNN).

with two MFs assigned to each input variable.

In Table 3, the values of performance index via number
of layers of the conventional PNN with Type 1
through Type 3 are shown. When three inputs are used,
only 1 node is produced. Therefore, the PNN
networks cannot be constructed completely for this
nonlinear system. The incomplete network of the PNN
in which the main characteristics of the PNN cannot
be revealed is shown in Fig. 5.

Considering the design of the proposed model, 2
triangular and Gaussian MFs are assigned to each
input variable just as in the case of the fuzzy system.
Fig. 6 depicts the preferred results of the performance .
index, PI and EPI, produced in successive layers of
the model according to the consequent type of the
fuzzy rules. These values are produced when the
triangular MF for the fuzzy rules and basic PNN are
employed. The values of the performance index in the
last layer and its modeling parameters are summarized
in Table 4.
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6 and its parameters

Type 1 triangular 3 3 Type 3 Type 3 2.4403 2.0686
Type 2 triangular 3 3 Type 3 Type 3 2.4403 2.0686
Type 3 triangular 3 3 Type 3 Type 3 2.0687 2.5783
Type 4 triangular 3 3 Type 3 Type 3 2.3842  3.2501

Table 5. Results of the 5th layer of the proposed model in Fig

Type 1 Gaussian 3 3 Type 2 Type 2 0.34752  1.1011
Type 2 Gaussian 3 3 Type 2 Type 2 0.34752  1.1011
Type 3 Gaussian 3 3 Type 2 Type 2 0.34752  1.1011
Type 4 Gaussian 3 3 Type 2 Type 2 0.34752  1.101l

Table 6. Results of the 5th layer of the proposed model in Fig

. 8 and its parameters.

Type 1 triangular 2 4 Type 3 Type 2 0.0004 0.72972
Type 2 triangular 2 4 Type 3 Type 2 0.0002  1.1311
Type 3 triangular 3 4 Type 1 Type 3 0.1609  0.3697
Type 4 triangular 3 4 Type 1 Type 3 0.1750  0.5269

Table 7. Results of th: St 1

r of the proposed model n Fig

9 and its parameters

Type 1 Gaussian 3 4 Type 3 Type 2 0.0006 1.1197
Type 2 Gaussian 2 4 Type 2 Type 2 0.0003  1.1259
Type 3 Gaussian 3 4 Type 3 Type 2 0.0006  1.3246
Type 4 Gaussian 3 4 Type 3 Type 2 0.0006  1.4057

The preferred results of the proposed model with
respect to the consequent type when the Gaussian MF
for the fuzzy rules and basic PNN are employed are
shown in Fig. 7 and its parameters are in Table 5. As
shown in Fig. 7 and Table 5, if Gaussian MF and basic
PNN are used for the proposed model, the results of
the model are influenced very little by the consequent
type of fuzzy rules. Meanwhile, the preferred results
and their parameters with respect to the consequent
type of fuzzy rules are shown in Fig. 8 and Table 6,
respectively when the triangular MF for the fuzzy
rules and modified PNN are employed. Here, we can
see that the consequent types have a large effect on
the performance index of the proposed model.

The preferred results and their parameters with re-
spect to the consequent type of fuzzy rules are shown
in Fig. 9 and Table 7, respectively when the Gaussian
MF for the fuzzy rules and modified PNN are utilized.
Here, the performance index of the proposed model is
affected by the consequent type of fuzzy rules in a
highly sensitive manner.

Fig. 10 shows the final structure of the proposed
model and its identification performances when trian-
gular MF for the fuzzy rule and modified PNN are
utilized. For the consequent type, Type ! is used and
for the PNN, the 2 inputs-modified quadratic type in
the 1st layer and 4 inputs-quadratic type in the 2nd
layer or higher are used. The model output follows the
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—a—: Type 1
—e— Type 2
—A—:Type 3
—v— Type 4

Perfoarmance index

—a—: Type 1
—e— Type 2
EPI —A— Type 3
—v—Type 4
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(b) Performance index for the testing data.

Fig. 7. Performance index of the proposed model
(Gaussian MF and basic PNN).

—a—: Type 1
—e— Type 2
Pl —A—:Type 3
—v—Type d

Performance index

Fuzzy PNN

—a—: Type 1
—e— Type 2
EPI —4A— Type 3
—v—Type 4

Performance index

Fuzzy PNN

(b) Performance index for the testing data.

Fig. 8. Performance index of the proposed model
(triangular MF and modified PNN).

actual output very well. Here, the values of the
performance index of the model are equal to
P1=0.0004, EPI=0.72972, respectively.

—a—: Type 1
—e—: Type 2
—&— Type 3
—w— Type 4

Performance index

IN

(a) Performance index for the training data.

—m— Type 1

|
| —e— Type 2
s :
! ] EPI —a— Type 3
(] —v— Type 4
15
3
T 12
[+}3
)
5 1
E 6 |
| .
3 1
! §=7¢\'
o 1 . ) . "
1 2 3 4 5
Fuzzy PNN

(b) Performance index for the testing data.

Fig. 9. Performance index of the proposed model
(Gaussian MF and modified PNN).

Fig. 10 shows the final structure of the proposed
model and its identification performances when
triangular MF for the fuzzy rule and modified PNN
are utilized. For the consequent type, Type 1 is used
and for the PNN, the 2 inputs-modified quadratic type
in the 1st layer and 4 inputs-quadratic type in the 2nd
layer or higher are used. The model output follows the
actual output very well. Here, the values of the
performance index of the model are equal to
P1=0.0004, EP1=0.72972, respectively.

Table 8 provides a comparison of the proposed
model with other techniques already proposed in the
literature. The comparison is realized on the basis of
the same performance index for the training and
testing data set. The experimental results clearly
reveal that the model outperforms the existing models
both in terms of better approximation capabilities (PI)
as well as superb generalization abilities (EPI).

5.2. Nonlinear static system
In this section, a double-input and single-output
static function is chosen to be a target system for the
new approach to the synergism of the fuzzy system
and the PNN network. This function is represented as
-1.5 )2’

y=(+x%+x3 1< x5, x,<5. (7)

This nonlinear static function has been widely used to
evaluate modeling performance and has been reported
by researchers, such as Sugeno [9], Kim [18,19],
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Table 8. Comparison of identification error with some
ious models

GMDH model[15] 4.7 5.7

Model 1 1.5 2.1
Fuzzy 4] Vodel 2 0.59 3.4

Type 1 0.84 1.22
FNN[17] Type2 0.73 1.28

Type 3 0.63 1.25
GD-FNN [16] 2.11 1.54
ANFIS [11] 0.043 1.066
FPNNs [25] 0.116 0.360
Fuzzy system (T + Type 2) 0.115 8.967
PNN (2 inputs-Type 2) 2.597 8.525

T+ basic PNN 2.068 2.578
Our G+ basic PNN 0.347 1.101
model T+ modified PNN  0.0004 0.729

G+ modified PNN  0.0006 1.119

Table 9. Simulation results of fuzzy system.

T 0.268
G 0.321

0.089
0.055

0.037
0.021

0.087
0.046

Table 10. Simulation results of PNN and its parameters.

2 1

0.299  0.096  0.268

and Lin [22]. This system represents the nonlinear
characteristic as shown in Fig. 11.

From the evenly distributed grid point of the input
range of the above expression (7), 50 input-output
data are obtained. The inputs are generated randomly
and the corresponding output is then computed
through the above relationship. The performance
index is defined as the mean squared error

IS o
P]_mgf(yi ¥i) (8)

with ¥; being the actual output, ¥; forming the output
(estimate) of each node, and m as the number of data.
Once again, a series of comprehensive experiments
was conducted and the results are summarized in the
same way as before with figures and tables.

A detailed topology of the final network of the
proposed model and its identification error are
depicted in Fig. 15. When triangular MF for fuzzy
rules and modified PNN are utilized, the value of the
performance index of the network is equal to
PI=0.00134. For the consequent type, Type 1 is used
and for the PNN, the 2 inputs-modified quadratic type
in the 1st layer and the 4 inputs-quadratic type in the 2-

D — [
ro P a

PD P
PD [

Actual output
...... Madel autput

10 20 a0 40

Data number

(b) Actual output versus model output.

Errors

L 2 L 1
10 20 30 40
Data number

(c) Error.
Fig. 10. Final structure of the proposed model and its
identification performances.

Fig. 11. Input-output relation of the two-input nonlin-
ear system.

nd layer or higher are employed.

Table 13 contrasts the performance of the proposed
method with other models studied in the previous
literature. The experiment results show that our model
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Fig. 12. Incomplete PNN architecture when 2 inputs
are used.
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Fig. 13. Performance index of the proposed model
(basic PNN used).
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Fuzzy PNN

Fig. 14. Performance index of the proposed model
(modified PNN used).

offers encouraging advantages and has superior
performance. However, not every individual fuzzy
system and conventional PNN can produce high-
quality performance.

6. CONCLUSIONS AND FURTHER
RESEARCH

In this paper, we introduced a novel soft computing
technique for the shortcoming of the polynomial neu-
ral network based on the fuzzy system and PNN. We
discussed a diversity of topologies, and applied the
model to nonlinear system modeling. As such, the
proposed modeling technique is a sophisticated and
versatile architecture capable of constructing models
out of a limited data set and producing superb results.
According to the types of membership functions, con-
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(a) Final structure of the proposed model.
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Fig. 15. Final structure of the proposed model and its
identification performances.

sequent types of fuzzy rules, and structure of the PNN,
we can see that the results of the model are varied.
From the simulation results, we know that the
proposed method is efficient and much more accurate
than each individual fuzzy system and PNN, as well
as other modeling methods. The proposed architecture
is satisfactory from a performance point of view, but
various problems still remain to be solved. There are
many factors contributing to the flexibility of the
model such as type of MF, number of MFs,
consequent types, PNN structures and number of input
and order (Type) for the PD. In this paper, these have
been chosen by a trial-and-error procedure with a
priori knowledge. Consequently, numerous results can



198 International Journal of Control, Automation, and Systems Vol. 2, No. 2, June 2004

Table 11. Results of the proposed model in Fig. 13 and its parameters.

Type 2 triangular 2 2

Type 2 Gaussian 2 2

Type 2 Type 2

Type 2 Type 2

0.08893
0.04781
0.03259
0.02439
0.02013
0.1661
0.09740
0.06030
0.03183
0.02650

s WM — R L —

Table 12. Results of the proposed model in Fig. 14 and its parameters.

Type 1 triangular 2 4

Type 3 Gaussian 2 4

Type 3 Type 2

Type 2 Type 2

0.10661
0.02662
0.01638
0.00711
0.00134
0.1661
0.05343
0.02785
0.00963
0.00161

VR W — RN —

Table 13. Comparison of identification error with
some previous models.

Sugeno [9] 0.079
Kim [18] 0.0197
Kim [19] 0.0089
Gomez-Skarmeta [20] 0.070
Hwang [21] 0.073
Lin [22] 0.0035
FPNNs [25] 0.0023
Fuzzy system (G+ Type 3) 0.021
Incomplete PNN (Type 2) 0.096

T+ basic PNN 0.020
Our G+ basic PNN 0.026
model T+ modified PNN 0.0013

G+ modified PNN 0.0016

be produced. As a result, there is no guarantee that the
obtained model is the best one.

For performance improvement, the application of a
stmple network structure, optimal network topology,
and a global optimization technique such as a genetic
algorithm are needed.

REFERENCES

[1]

(2]

[3]

(4]

(3]

[6]

A. G. Ivakhnenko, “Polynomial theory of com-
plex systems,” IEEE Trans. on Syst. Man Cy-
bern., vol. SMC-1, no. 1, pp. 364-378, 1971.

A. G. Ivakhnenko, G. 1. Krotov, and N. A.
Ivakhnenko, “Identification of the mathematical
model of a complex system by the self-
organization method,” Theoretical Systems Ecol-
ogy: Advances and Case Studies, E. Halfon, Ed.
New York: Academic, ch. 13, 1970.

A. G. Ivakhnenko and N. A. Ivakhnenko, “Long-
term prediction by GMDH algorithms using the
unbiased criterion and the balance-of-variables
criterion,” Sov. Automat. Contr., vol. 7, pp. 40-45,
1974.

A. G. Ivakhnenko and N. A. Ivakhnenko, “Long-
term prediction by GMDH algorithms using the
unbiased criterion and the balance-of-variables
criterion, part 2,” Sov. Automat. Contr., vol. 8, pp.
24-38, 1975.

S. J. Farlow, Self-Organizing Methods in Model-
ing, GMDH Type-Algorithms, New York: Marcel
Dekker, 1984,

D. W. Kim, “Evolutionary Design of Self-
Organizing Polynomial Neural Networks (in Ko-
rean),” Master’s thesis, Dept. Control Instrum.,



International Journal of Control, Automation, and Systems Vol. 2, No. 2, June 2004

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Wonkwang Univ., 2002.

S. K. Oh, D. W. Kim, and B. J. Park, “A study on
the optimal design of polynomial neural net-
works structure (in Korean),” Trans. KIEFE, vol.
49D, no. 3, 2000.

S. K. Oh and W. Pedrycz, “The design of self-
organizing polynomial neural networks,” /nf. Sci.,
vol. 141, pp. 237-258, 2002.

M. Sugeno, and T. Yasukawa, “A fuzzy-logic-
based approach to qualitative modeling”, /EEE
Trans. on Fuzzy Syst. vol. 1,no. 1, pp. 7-31, 1993.

D. W. Kim, S. K. Oh, and H. K. Kim, “A study
on the self-organizing fuzzy polynomial neural
networks,” Journal of KIEE, vol. 11, no. 2, pp.
79-89, 2001.

J. S. Jang, "ANFIS: Adaptive-networks-based
fuzzy inference system,” IEEE Trans. on Syst.,
Man, Cybern., vol. 23, no. 3, pp. 665-685, 1993.

J. S. Jang, C. T. Sun, and E. Mizutani, Neuro-
Fuzzy AND Soft Computing: A Computational
Approach to Learning and Machine Intelligence,
Prentice Hall, 1997.

H. Takagi and 1. Hayashi, “NN-driven fuzzy rea-
soning,” Int. J. Approx. Reasoning, vol. 5, no. 3,
pp. 191-212, 1991.

M. Sugeno and G. T. Kang, “Structure identifica-
tion of fuzzy model,” Fuzzy Sets Syst., vol. 28,
pp- 15-33, 1988.

T. Kondo, “Revised GMDH algorithm estimat-
ing degree of the complete polynomial (in Japa-
nese),” Tran. Soc. Instrum. Control Eng., vol. 22,
no. 9, pp. 928-934, 1986.

S. Wu, M. J. Er, and Y. Gao, “A fast approach for
automatic generation of fuzzy rules by general-
ized dynamic fuzzy neural networks,” [EEE
Trans. on Fuzzy Syst., vol. 9, no. 4, pp. 578-594,
2001.

Dongwon Kim is currently a Ph.D.
candidate in Electrical Engineering at
Korea University, Seoul, Korea. His
research interests are soft computing
such as fuzzy systems, neural networks,
genetic algorithms, GMDH-type algo-
rithms, and their applications to com-
plex systems.

[17]

[18]

[19]

(20]

[21]

[22]

[23]

(24]

[25]

199

S. I. Horikawa, T. Furuhashi, and Y. Uchikawa,
“On fuzzy modeling using fuzzy neural networks
with the back-propagation algorithm,” IEEE
Trans. on Neural Netw., vol. 3, no. 5, pp. 801-
806, 1992.

E. T. Kim, M. K. Park, S. H. Ji and M. Park, “A
new approach to fuzzy modeling”, /EEE Trans. on
Fuzzy Syst. vol. 5,no. 3, pp. 328-337, 1997.

E. Kim, H. Lee, M. Park, and M. Park, “A sim-
ply identified Sugeno-type fuzzy model via dou-
ble clustering,” Inf Sci., vol. 110, pp. 25-39,
1998.

A. F. Gomez-Skarmeta, M. Delgado, and M. A.
Vila, “About the use of fuzzy clustering tech-
niques for fuzzy model identification,” Fuzzy
Sets Syst., vol. 1006, pp. 179-188, 1999.

H. S. Hwang, and K. B. Woo, “Linguistic fuzzy
model identification,” IEE Proc.-Control Theory
Appl., vol. 142, no. 6, pp. 537-544, 1995.

Y. Lin, and G. A. Cunningham III, “A new ap-
proach to fuzzy-neural system modeling,” IEEFE
Trans. on Fuzzy Syst. vol. 3, no. 2, pp. 190-198,
1995.

D. W. Kim, J. H. Park, and G. T. Park, “Combi-
nation of fuzzy rule based model and self-
organizing approximator technique: a new ap-
proach to nonlinear system modeling,” Proc. of
Fuzz-IEEE, pp. 1363-1367, 2003.

D. W. Kim and G. T. Park, “Hybrid architecture
of the neural networks and self-organizing ap-
proximator technique: a new approach to nonlin-
ear system modeling,” Proc. of IEEE Int. Conf.
Syst., Man, Cybern, pp. 774-779, 2003.

B. J. Park, W. Pedrycz, and S. K. Oh, “Fuzzy poly-
nomial neural networks: hybrid architectures of
fuzzy modeling,” [EEE Trans. on Fuzzy Syst., vol.
10, no. 5, pp. 607-621, 2002.

Sung-Hee Huh received his B.S. and
M.S. degrees from Kookmin University,
Seoul, Korea in 1994 and 1996. He is
currently pursuing a Ph.D degree in the
Department of Electrical Engineering
at Korea University, Seoul, Korea.
From 1998 to 2002, he was with the
Information & Communication Re-

search Center as a Researcher. Since 1996, he has been with

the Intelligent System Research Center at the Korea Insti-
tute of Science and Technology, Seoul, Korea as a Student
Researcher. His research interests are in intelligent control,
digital control and motor drives.



200 International Journal of Control, Automation, and Systems Vol. 2, No. 2, June 2004

Sam-Jun Seo received his B.S., M.S.
and Ph.D. degrees in Electrical Engi-
neering from Korea University in 1989,
1991 and 1996, respectively. He joined
Anyang University in 1997 and is cur-
rently an Assistant Professor in Electri-
cal and Electronic Engineering. His
research interests include intelligent
control, fuzzy systems, neural networks,
and tele-operating systems.

Gwi-Tae Park received his B.S., M.S.
and Ph.D. degrees in Electrical Engi-
neering from Korea University in 1973,
1977 and 1981, respectively. He was a
Technical Staff Member in the Korea
Nuclear Power Laboratory and an
Electrical Engineering Faculty Mem-
ber at Kwangwoon University, in 1975
and 1978, respectively. He joined Ko-
rea University in 1981 where he is currently a Professor in
Electrical Engineering. He was a Visiting Professor at the
University of lllinois, UC and the University of Maryland,
in 1984 and 1996, respectively.

Dr. Park is presently serving as the President of the Intelli-
gent Building System (IBS)-Korea. His research interests
include soft computing techniques, adaptive signal process-
ing, computer & control networks and their applications to
robots, home automation, security systems, smart car, and
IBS.




