DOI QR코드

DOI QR Code

An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks

점증적 학습 퍼지 신경망을 이용한 적응 분류 모델

  • 이현숙 (동양공업전문대학 전산정보학부)
  • Published : 2006.12.25

Abstract

The design of a classification system generally involves data acquisition module, learning module and decision module, considering their functions and it is often an important component of intelligent systems. The learning module provides a priori information and it has been playing a key role for the classification. The conventional learning techniques for classification are based on a winner take all fashion which does not reflect the description of real data where boundarues might be fuzzy Moreover they need all data for the learning of its problem domain. Generally, in many practical applications, it is not possible to prepare them at a time. In this paper, we design an adaptive classification model using incremental training fuzzy neural networks, FNN-I. To have a more useful information, it introduces the representation and membership degree by fuzzy theory. And it provides an incremental learning algorithm for continuously gathered data. We present tie experimental results on computer virus data. They show that the proposed system can learn incrementally and classify new viruses effectively.

분류 시스템은 데이터 전처리 모듈, 학습모듈, 의사결정모듈로 구성되어 있으며 지능형시스템의 중요한 구성요소로 활용되어왔다. 특히 학습모듈은 사전정보를 제공하므로 분류를 위한 핵심 역할을 수행하여 왔다. 기존의 학습을 위한 기법은 주로 승자독점방식으로 데이터를 처리하므로 경계가 불명확한 대부분의 실세계 응용에 적합하지 못하다. 또한 학습 알고리즘에 필요한 데이터를 한꺼번에 준비해야 하지만 이는 일반적으로 가능하지 않은 경우가 많다. 이를 위하여 본 논문에서는 점증적 학습 퍼지신경망, FNN-I,를 이용한 적응 분류모델을 설계한다. 이 모델에서는 유용하게 정보를 표현하기 위하여 퍼지이론을 도입하고 계속적으로 모여지는 데이터를 가지고 점증적으로 학습할 수 있는 알고리즘을 제시한다. 제안된 모델을 컴퓨터 바이러스 분류를 위한 실제 데이터에 적용하여 점증적으로 학습할 수 있고 효과적으로, 새로운 바이러스 데이터를 분류할 수 있음을 보인다.

Keywords

References

  1. Gupta, M. M., Jin, L., and Homma, N., Static and Dynamic Neural Networks : From Fundamentals to Advanced Theory, Wiley-IEEE Press, April 2004
  2. Yi-Ta Wu, Yoo Jung An, James Geller and Yih-Tyng Wu, 'A Data Mining Based Genetic Algorithm', Proc. og the 4th IEEE workshop on SEUS-WCCIA, 2006 https://doi.org/10.1109/SEUS-WCCIA.2006.2
  3. J. C. Bezdek, 'Pattern Recognition with Fuzzy Objective Function Algorithms', Plenum press, New York, 1981
  4. Jian Yu and Miin-Shen Yang, 'Optimality Test for Generalized FCM and Its Application to Parameter Selection', IEEE Transactions on Fuzzy Systems, Vol. 13, No. 1, Feb. 2005 https://doi.org/10.1109/TFUZZ.2004.836065
  5. 이현숙, '퍼지 성능 측정자를 이용한 적응 데이터 마이닝 모델', 정보처리학회 논문지, 제13-B권 5호, 2006 https://doi.org/10.3745/KIPSTB.2006.13B.5.541
  6. Constantinos Constantinopoulos and Aristidis Likas, 'An Incremental Training Method for the Probabilistic RBF Network', IEEE Trans. on Neural Networks, Vol. 17, No. 4, July 2006 https://doi.org/10.1109/TNN.2006.875982
  7. Vicente O. Baez-Monroy and Simon O'Keefe, 'Modelling Incremental Learning With The Batch SOM Training Method', Proc. of 5th International Conference on HIS, 2005
  8. William Arnold, Gerald Tesauro, 'Automatically generated Win32 heuristic virus detection', Virus Bulletin conference, September, 2000
  9. G. Tesauro, J. Kephart, and G. Sorkin, 'Neural networks for computer virus recognition', IEEE Expert, 11:5-6, August 1996 https://doi.org/10.1109/64.511768
  10. Jianyong Dai, Joohan Lee and Morgan C. Wang, 'Detecting Unknown Computer Virus Using Data Mining Techniques', Business Intelligent Symposium, poster presentation, April, 2006
  11. I. Witten and E. Frank, 'Data mining: Practical machine learning tools and techniques with java implementations', Morgan Kaufmann, San francisco, CA, 2000
  12. Abou-Assaleh, Nick Cercone, Vlado Keselj, and Ray Sweidan, 'Detection of New Malicious Code Using N-grams Signatures, Proceedings of the Second Annual Conference on Privacy, Security and Trust (PST'04), pp. 193-196, 2004
  13. Kolter, J.Z., and Maloof, M. A., 'Learning to detect malicious executables in the wild', In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 470-478. New York, NY, 2004
  14. InSeon Yoo, 'Visualizing Windows Executable Viruses Using Self-Organizing Maps', Proceedings of the 2004 ACM workshop on Visualization and Data Mining for Computer Security, 2004
  15. VX Heaven : http://vx.netlux.org
  16. http://www.datarescue.com