분류 시스템은 데이터 전처리 모듈, 학습모듈, 의사결정모듈로 구성되어 있으며 지능형시스템의 중요한 구성요소로 활용되어왔다. 특히 학습모듈은 사전정보를 제공하므로 분류를 위한 핵심 역할을 수행하여 왔다. 기존의 학습을 위한 기법은 주로 승자독점방식으로 데이터를 처리하므로 경계가 불명확한 대부분의 실세계 응용에 적합하지 못하다. 또한 학습 알고리즘에 필요한 데이터를 한꺼번에 준비해야 하지만 이는 일반적으로 가능하지 않은 경우가 많다. 이를 위하여 본 논문에서는 점증적 학습 퍼지신경망, FNN-I,를 이용한 적응 분류모델을 설계한다. 이 모델에서는 유용하게 정보를 표현하기 위하여 퍼지이론을 도입하고 계속적으로 모여지는 데이터를 가지고 점증적으로 학습할 수 있는 알고리즘을 제시한다. 제안된 모델을 컴퓨터 바이러스 분류를 위한 실제 데이터에 적용하여 점증적으로 학습할 수 있고 효과적으로, 새로운 바이러스 데이터를 분류할 수 있음을 보인다.
컴퓨터가 널리 보급되고 인터넷이 발전함에 따라 수없이 많은 정보가 디지털 형태로 생산되고 있다. 이러한 정보를 사람이 일일이 가공하고 분류하기에는 한계가 있으므로 자동으로 문서를 분류하고자 하는 연구가 대두되었다. 문서를 자동으로 분류하기 위해 기계학습 방법이 많이 이용되고 있다. 기계학습방법을 이용한 문서분류가 좋은 성능을 내기 위해서는 충분한 양의 학습데이터가 필요하다. 학습데이터를 만들기 위해서는 사람이 일일이 분류해야 하므로, 비용이 많이 든다. 본 논문에서는 적은양의 labeled 데이터로부터 시작하여, 점증적으로 unlabeled 데이터를 학습에 참여시킴으로써, 문서분류의 성능을 높이고자 한다. 실험을 통해 Unlabeled 문서데이터를 사용한 것이 좋은 성능을 보였음을 알 수 있다.
본 논문은 비정상 상태 탐지 문제를 위한 점증적 서포트 벡터 학습을 다룬다. 비정상상태 탐지를 위한 서포트 벡터 학습 중 가장 잘 알려진 기법 중 하나는 SVDD(support vector data description)인데, 이 기법은 정상적인 데이터의 집합을 모든 가능한 비정상 개체로부터 구분하기 위하여 커널 특징공간(kernel feature space) 위에서 정의되는 볼(ball)을 이용하는 전략을 추구한다. 본 논문의 주된 관심사는 최적해와 점증적으로 주어지는 학습 데이터의 상관관계를 이용하는 방향으로 SVDD 기법을 수정하는 것이다. 본 논문에서는, 기존의 SVDD 기법을 상세히 복습한 후에, 라그랑제 쌍대 문제(Largrange dual problem)에 관한 관찰을 바탕으로 최적 해를 찾기 위한 점증적 풀이 기법을 제시한다. 그리고, 제시된 점증적 방법론의 적용 가능성이 예제를 통하여 보여진다.
본 논문에서는 패턴 분류를 위한 새로운 학습 알고리즘을 소개한다. 이 알고리즘은 학습 데이터 집합에 포함된 오류 때문에 네트워크 구조가 너무 복잡하게 되는 점증적 학습 알고리즘의 문제를 해결하기 위해 고안되었다. 이 문제를 위한 접근 방법으로 미리 정의된 판단기준을 가지고 학습 과정을 중단하는 전지 방법을 사용한다. 이 과정에서 적절한 처리과정에 의해 3층 전향구조를 가지는 반복적 모델이 점증적 모델로부터 유도된다 여기서 이 네트워크 구조가 위층과 아래층 사이에 완전연결이 아니라는 점을 주목한다. 전지 방법의 효율성을 확인하기 위해 이 네트워크는 EBP로 다시 학습한다. 이 결과로부터 제안된 알고리즘이 시스템 성능과 네트워크 구조를 이루는 노드의 수 면에서 효과적임을 발견할 수 있다.
세선화 알고리즘의 간접 기법으로 제시된 자기구성 특징 그래프(Self-Organizing feature Graph : SOG) 기법은 안정된 세선화 결과를 가지는 장점이 있으나 학습 알고리즘에서 전체 노드를 재정돈하는 과정이 내포되어 있다. 본 본문에서는 학습 알고리즘의 재정돈 과정을 대신하는 점증적 정돈기법을 제안하고 이 기법을 세선화 알고리즘에 결합하여 실험하고 분석하였다. 제안된 알고리즘은 기존의 SO를 적용한 결과와 같은 우수한 세선화 결과를 얻으며 학습시간은 O((logM)$^3$)인 복잡도를 가진다.
시뮬레이션 환경이나 실제 환경에서 이동 로봇 제어기를 진화 알고리즘으로 만들어내는 연구가 최근 활발하다. 이전의 연구에서는 기존의 단순한 진화 알고리즘이 환경에 제한된 제어기를 만들어 내는 문제점을 해결하기 위한 방법으로 셀룰라 오토마타 기반 신경망의 점증적 진화방법을 제시하였다. 점증적 진화 방법은 초기에 간단한 행동으로 해결할 수 있는 환경에 맞도록 제어기를 진화시킨 다음, 점차 복잡한 행동이 요구되는 환경에서 제어기를 점증적으로 진화시킨다. 실험결과, 점증적 진화의 방법이 좀 더 효율적으로 로봇을 진화시키고 환경의 변화에 보다 강한 것을 알 수 있었다. 그러나 이전연구에서의 점증적 진화 방법은 한 단계에서 진화가 끝난 후 다음 단계로 넘어갈 개체를 사람이 선택해야 하는 문제가 있었다. 본 논문에서는 이러한 문제점을 해결하기 위한 다양한 방법을 제시하고 실험을 통해 그 유용성을 보이고자 한다.
인공지능, 기계학습 및 데이터마이닝 기법들을 침입탐지 시스템에 적용하는 연구가 활발히 진행되고 있다. 그러나 많은 연구가 공격패턴의 분류를 위한 분류기(classifier)의 학습 알고리즘 성능 개선에 목적을 두고 있다. 그리고 이러한 학습 알고리즘은 대부분 일괄처리(batch) 방식으로 동작하여 실시간 침입탐지 시스템의 적용에는 적합하지 못하다. 본 논문에서는 실시간 침입탐지 시스템을 위한 점증적 특징 추출 기법과 분류가 가능한 실시간 침입탐지 시스템을 제안한다. 제안된 방법을 KDD CUP 99 자료에 적용한 결과 실시간 기법임에도 불구하고 일괄처리 방식과 비슷한 결과를 나타내었다.
자기구성 특징지도(Self-Organizing feature Map : SOM) 및 $L^*$ 등의 자가 학습 신경망의 알고리즘들은 학습 결과 중에 바람직하지 못한 뒤틀림 현상(cross-over)을 생성하게 되므로 재학습으로 인한 전반적인 학습 시간의 지연을 초래한다. 이 논문에서는 비교적 학습 속도가 빠른 $L^*$의 점증적 학습 구조를 기본으로 하여 뒤틀림 현상 방지를 목적으로 초기 학습 단계에서 학습 가중치들의 노드들을 재조정하는 개선된 알고리즘을 제안한다. 이러한 알고리즘의 실험 결과는 모두 정상적인 학습 결과를 보이고 학습의 시행 착오적인 재실행이 없으므로 전반적인 학습 속도는 기존의 알고리즘보다 빠르게 됨을 보인다.
학습자 능력 중심의 교육으로부터 학습자 중심적인 교육의 필요성과 학습자간의 협동 활동의 의미가 점차 증대되고 있다. 프로젝트 교육 시스템은 학습자와 학습자 및 학습자와 교수자의상호 참여를 통하여, 수행하게 될 직무를 이해하고 능력의 점증적인 발전을 도모하게 된다. 시대적 요구에 부응하여 컴퓨터 및 인터넷이 대중화되어 가는 시점에서 프로젝트 수행을 효율적으로 진행할 수 있으므로 본 논문에서는 산업체의 업무 처리 체계를 실현 목표로 한 프로젝트 교육 학습체계를 제시한다.
웹 기반 교수-학습 시스템은 상호작용을 부가하여 학습자 위주의 교육 환경에 변화를 가져왔다. 학습자 능력 중심의 교육으로부터 학습자 중심적인 교육의 필요성과 학습자간의 협동 활동의 의미가 점차 증대되고 있다. 프로젝트 교육 시스템은 학습자와 학습자 및 학습자와 교수자의 상호 참여를 통하여, 수행하게 될 직무를 이해하고 능력의 점증적인 발전을 도모하게 된다. 시대적 요구에 부응하여 컴퓨터 및 인터넷이 대중화되어 가는 시점에서 프로젝트 수행을 효율적으로 진행할 수 있으므로 본 논문에서는 산업체의 업무 처리 체계를 실현 목표로 한 프로젝트 교육 학습체계를 제시한다. 본 논문에서 제시하는 프로젝트 시스템은 교수자가 프로젝트의 주관자적인 입장에서 문제를 제시하고 교육을 진행하며, 학습자는 학습자 중심의 비교 학습 및 패턴화의 장점을 극대화 시켜서 학습의 효율성을 극대화 할 수 있는 방안을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.