• 제목/요약/키워드: 점증적 학습

검색결과 32건 처리시간 0.022초

점증적 학습 퍼지 신경망을 이용한 적응 분류 모델 (An Adaptive Classification Model Using Incremental Training Fuzzy Neural Networks)

  • 이현숙
    • 한국지능시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.736-741
    • /
    • 2006
  • 분류 시스템은 데이터 전처리 모듈, 학습모듈, 의사결정모듈로 구성되어 있으며 지능형시스템의 중요한 구성요소로 활용되어왔다. 특히 학습모듈은 사전정보를 제공하므로 분류를 위한 핵심 역할을 수행하여 왔다. 기존의 학습을 위한 기법은 주로 승자독점방식으로 데이터를 처리하므로 경계가 불명확한 대부분의 실세계 응용에 적합하지 못하다. 또한 학습 알고리즘에 필요한 데이터를 한꺼번에 준비해야 하지만 이는 일반적으로 가능하지 않은 경우가 많다. 이를 위하여 본 논문에서는 점증적 학습 퍼지신경망, FNN-I,를 이용한 적응 분류모델을 설계한다. 이 모델에서는 유용하게 정보를 표현하기 위하여 퍼지이론을 도입하고 계속적으로 모여지는 데이터를 가지고 점증적으로 학습할 수 있는 알고리즘을 제시한다. 제안된 모델을 컴퓨터 바이러스 분류를 위한 실제 데이터에 적용하여 점증적으로 학습할 수 있고 효과적으로, 새로운 바이러스 데이터를 분류할 수 있음을 보인다.

레이블이 없는 문서를 이용한 SVM 기반의 점증적 지도학습 (Incremental Superised Learning based on SVM with Unlabeled Documents)

  • 김수영;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.301-303
    • /
    • 2002
  • 컴퓨터가 널리 보급되고 인터넷이 발전함에 따라 수없이 많은 정보가 디지털 형태로 생산되고 있다. 이러한 정보를 사람이 일일이 가공하고 분류하기에는 한계가 있으므로 자동으로 문서를 분류하고자 하는 연구가 대두되었다. 문서를 자동으로 분류하기 위해 기계학습 방법이 많이 이용되고 있다. 기계학습방법을 이용한 문서분류가 좋은 성능을 내기 위해서는 충분한 양의 학습데이터가 필요하다. 학습데이터를 만들기 위해서는 사람이 일일이 분류해야 하므로, 비용이 많이 든다. 본 논문에서는 적은양의 labeled 데이터로부터 시작하여, 점증적으로 unlabeled 데이터를 학습에 참여시킴으로써, 문서분류의 성능을 높이고자 한다. 실험을 통해 Unlabeled 문서데이터를 사용한 것이 좋은 성능을 보였음을 알 수 있다.

  • PDF

비정상 상태 탐지 문제를 위한 서포트벡터 학습 (Support Vector Learning for Abnormality Detection Problems)

  • 박주영;임채환
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.266-274
    • /
    • 2003
  • 본 논문은 비정상 상태 탐지 문제를 위한 점증적 서포트 벡터 학습을 다룬다. 비정상상태 탐지를 위한 서포트 벡터 학습 중 가장 잘 알려진 기법 중 하나는 SVDD(support vector data description)인데, 이 기법은 정상적인 데이터의 집합을 모든 가능한 비정상 개체로부터 구분하기 위하여 커널 특징공간(kernel feature space) 위에서 정의되는 볼(ball)을 이용하는 전략을 추구한다. 본 논문의 주된 관심사는 최적해와 점증적으로 주어지는 학습 데이터의 상관관계를 이용하는 방향으로 SVDD 기법을 수정하는 것이다. 본 논문에서는, 기존의 SVDD 기법을 상세히 복습한 후에, 라그랑제 쌍대 문제(Largrange dual problem)에 관한 관찰을 바탕으로 최적 해를 찾기 위한 점증적 풀이 기법을 제시한다. 그리고, 제시된 점증적 방법론의 적용 가능성이 예제를 통하여 보여진다.

점증적 모델에서 최적의 네트워크 구조를 구하기 위한 학습 알고리즘 (An Learning Algorithm to find the Optimized Network Structure in an Incremental Model)

  • 이종찬;조상엽
    • 인터넷정보학회논문지
    • /
    • 제4권5호
    • /
    • pp.69-76
    • /
    • 2003
  • 본 논문에서는 패턴 분류를 위한 새로운 학습 알고리즘을 소개한다. 이 알고리즘은 학습 데이터 집합에 포함된 오류 때문에 네트워크 구조가 너무 복잡하게 되는 점증적 학습 알고리즘의 문제를 해결하기 위해 고안되었다. 이 문제를 위한 접근 방법으로 미리 정의된 판단기준을 가지고 학습 과정을 중단하는 전지 방법을 사용한다. 이 과정에서 적절한 처리과정에 의해 3층 전향구조를 가지는 반복적 모델이 점증적 모델로부터 유도된다 여기서 이 네트워크 구조가 위층과 아래층 사이에 완전연결이 아니라는 점을 주목한다. 전지 방법의 효율성을 확인하기 위해 이 네트워크는 EBP로 다시 학습한다. 이 결과로부터 제안된 알고리즘이 시스템 성능과 네트워크 구조를 이루는 노드의 수 면에서 효과적임을 발견할 수 있다.

  • PDF

점증적 정돈기법의 SOG를 이용한 개선된 세선화 알고리즘 (Improved Thinning Algorithm using SOG with Incremental Ordering method)

  • 정선정;이찬희;정순호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (B)
    • /
    • pp.334-336
    • /
    • 2001
  • 세선화 알고리즘의 간접 기법으로 제시된 자기구성 특징 그래프(Self-Organizing feature Graph : SOG) 기법은 안정된 세선화 결과를 가지는 장점이 있으나 학습 알고리즘에서 전체 노드를 재정돈하는 과정이 내포되어 있다. 본 본문에서는 학습 알고리즘의 재정돈 과정을 대신하는 점증적 정돈기법을 제안하고 이 기법을 세선화 알고리즘에 결합하여 실험하고 분석하였다. 제안된 알고리즘은 기존의 SO를 적용한 결과와 같은 우수한 세선화 결과를 얻으며 학습시간은 O((logM)$^3$)인 복잡도를 가진다.

  • PDF

효율적인 점증적 진화학습을 위한 씨앗개체의 자동생성 (Automatic Generation of Seed Individuals for Efficient Incremental Evolutionary Learning)

  • 송금범;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (2)
    • /
    • pp.6-8
    • /
    • 1999
  • 시뮬레이션 환경이나 실제 환경에서 이동 로봇 제어기를 진화 알고리즘으로 만들어내는 연구가 최근 활발하다. 이전의 연구에서는 기존의 단순한 진화 알고리즘이 환경에 제한된 제어기를 만들어 내는 문제점을 해결하기 위한 방법으로 셀룰라 오토마타 기반 신경망의 점증적 진화방법을 제시하였다. 점증적 진화 방법은 초기에 간단한 행동으로 해결할 수 있는 환경에 맞도록 제어기를 진화시킨 다음, 점차 복잡한 행동이 요구되는 환경에서 제어기를 점증적으로 진화시킨다. 실험결과, 점증적 진화의 방법이 좀 더 효율적으로 로봇을 진화시키고 환경의 변화에 보다 강한 것을 알 수 있었다. 그러나 이전연구에서의 점증적 진화 방법은 한 단계에서 진화가 끝난 후 다음 단계로 넘어갈 개체를 사람이 선택해야 하는 문제가 있었다. 본 논문에서는 이러한 문제점을 해결하기 위한 다양한 방법을 제시하고 실험을 통해 그 유용성을 보이고자 한다.

  • PDF

실시간 침입탐지 시스템에 관한 연구 (A Study on Realtime Intrusion Detection System)

  • 김병주
    • 한국정보통신학회논문지
    • /
    • 제9권1호
    • /
    • pp.40-44
    • /
    • 2005
  • 인공지능, 기계학습 및 데이터마이닝 기법들을 침입탐지 시스템에 적용하는 연구가 활발히 진행되고 있다. 그러나 많은 연구가 공격패턴의 분류를 위한 분류기(classifier)의 학습 알고리즘 성능 개선에 목적을 두고 있다. 그리고 이러한 학습 알고리즘은 대부분 일괄처리(batch) 방식으로 동작하여 실시간 침입탐지 시스템의 적용에는 적합하지 못하다. 본 논문에서는 실시간 침입탐지 시스템을 위한 점증적 특징 추출 기법과 분류가 가능한 실시간 침입탐지 시스템을 제안한다. 제안된 방법을 KDD CUP 99 자료에 적용한 결과 실시간 기법임에도 불구하고 일괄처리 방식과 비슷한 결과를 나타내었다.

뒤틀림 현상이 없는 FSOM 학습 알고리즘 (Improved Fast SOM learning algorithm without cross-over)

  • 정선정;정순호
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (하)
    • /
    • pp.1029-1032
    • /
    • 2001
  • 자기구성 특징지도(Self-Organizing feature Map : SOM) 및 $L^*$ 등의 자가 학습 신경망의 알고리즘들은 학습 결과 중에 바람직하지 못한 뒤틀림 현상(cross-over)을 생성하게 되므로 재학습으로 인한 전반적인 학습 시간의 지연을 초래한다. 이 논문에서는 비교적 학습 속도가 빠른 $L^*$의 점증적 학습 구조를 기본으로 하여 뒤틀림 현상 방지를 목적으로 초기 학습 단계에서 학습 가중치들의 노드들을 재조정하는 개선된 알고리즘을 제안한다. 이러한 알고리즘의 실험 결과는 모두 정상적인 학습 결과를 보이고 학습의 시행 착오적인 재실행이 없으므로 전반적인 학습 속도는 기존의 알고리즘보다 빠르게 됨을 보인다.

  • PDF

인턴쉽 기반 프로젝트 시스템의 설계 및 구현 (Design and implementation of an internship-based project system)

  • 김종엄
    • 한국컴퓨터산업학회논문지
    • /
    • 제5권9호
    • /
    • pp.903-910
    • /
    • 2004
  • 학습자 능력 중심의 교육으로부터 학습자 중심적인 교육의 필요성과 학습자간의 협동 활동의 의미가 점차 증대되고 있다. 프로젝트 교육 시스템은 학습자와 학습자 및 학습자와 교수자의상호 참여를 통하여, 수행하게 될 직무를 이해하고 능력의 점증적인 발전을 도모하게 된다. 시대적 요구에 부응하여 컴퓨터 및 인터넷이 대중화되어 가는 시점에서 프로젝트 수행을 효율적으로 진행할 수 있으므로 본 논문에서는 산업체의 업무 처리 체계를 실현 목표로 한 프로젝트 교육 학습체계를 제시한다.

  • PDF

웹 기반 학습자 중심의 프로젝트 시스템의 설계 및 구현 (Design and implementation of a web-based learner-oriented project system)

  • 정용기;최은만
    • 정보처리학회논문지A
    • /
    • 제9A권4호
    • /
    • pp.621-630
    • /
    • 2002
  • 웹 기반 교수-학습 시스템은 상호작용을 부가하여 학습자 위주의 교육 환경에 변화를 가져왔다. 학습자 능력 중심의 교육으로부터 학습자 중심적인 교육의 필요성과 학습자간의 협동 활동의 의미가 점차 증대되고 있다. 프로젝트 교육 시스템은 학습자와 학습자 및 학습자와 교수자의 상호 참여를 통하여, 수행하게 될 직무를 이해하고 능력의 점증적인 발전을 도모하게 된다. 시대적 요구에 부응하여 컴퓨터 및 인터넷이 대중화되어 가는 시점에서 프로젝트 수행을 효율적으로 진행할 수 있으므로 본 논문에서는 산업체의 업무 처리 체계를 실현 목표로 한 프로젝트 교육 학습체계를 제시한다. 본 논문에서 제시하는 프로젝트 시스템은 교수자가 프로젝트의 주관자적인 입장에서 문제를 제시하고 교육을 진행하며, 학습자는 학습자 중심의 비교 학습 및 패턴화의 장점을 극대화 시켜서 학습의 효율성을 극대화 할 수 있는 방안을 제시하였다.