• Title/Summary/Keyword: fuzzy stability

Search Result 621, Processing Time 0.03 seconds

A Stabilization algorithm for Fuzzy Systems with Singleton Consequents

  • Michio Sugeno;Lee, Chang-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.36-41
    • /
    • 1998
  • This paper presents a stabilization algorithm for a class of fuzzy systems with singleton consequect. To this aim, we introduce two canonical forms of an unforced fuzzy system and a stability theorem. A design example is shown to verify the stabilization algorithm.

  • PDF

Controller Design for Affine T-S Fuzzy System with Parametric Uncertainties (파라미터 불확실성을 갖는 어핀 T-S 퍼지 시스템의 제어기 설계)

  • Lee, Sang-In;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.133-136
    • /
    • 2004
  • This paper proposes a stability condition in affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties and then, introduces the design method of a fuzzy-model-based controller which guarantees the stability. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of linear matrix inequalities (LMIs).

  • PDF

Design of GA-Fuzzy Precompensator of TCSC-PSS for Enhancement of Power System Stability (전력계통 안정도 향상을 위한 TCSC 안정화 장치의 GA-퍼지 전 보상기 설계)

  • Wang Yong-Peel;Chung Mun-Kyu;Chung Hyeng-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.51-60
    • /
    • 2005
  • In this paper, we design the GA-fuzzy precompensator of a Power System Stabilizer for Thyristor Controlled Series Capacitor(TCSC-PSS) for enhancement of power system stability. Here a fuzzy precompensator is designed as a fuzzy logic-based precompensation approach for TCSC-PSS. This scheme is easily implemented by adding a fuzzy precompensator to an existing TCSC-PSS. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Nonlinear simulation results show that the proposed control technique is superior to conventional TCSC-PSS in dynamic responses over the wide range of operating conditions and in convinced robust and reliable in view of structure.

Design of GA-Fuzzy Precompensator for Enhancement of Pourer System Stability (전력시스템의 안정도 향상을 위한 GA-퍼지 전 보상기 설계)

  • Jeong, Hyeong-Hwan;Jeong, Mun-Gyu;Lee, Jeong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.83-92
    • /
    • 2002
  • In this paper, we design a GA-fuzzy precompensator for enhancement of power system stability. Here, a fuzzy prerompensator is designed as a fuzzy logic-based precompensation approach for Power System Stabilizer(PSS). This scheme is easily implemented simply by adding a fuzzy precompensator to an existing PSS. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Simulation results show that the proposed control technique is superior to a conventional PSS in dynamic responses over the wide range of operating conditions and is convinced robustness and reliableness in view of structure.

Robust Stability Analysis and Design of Fuzzy Model Based Feedback Linearization Control Systems (퍼지 모델 기반 피드백 선형화 제어 시스템의 강인 안정성 해석과 설계)

  • 박창우;이종배;김영욱;성하경
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.3
    • /
    • pp.79-90
    • /
    • 2004
  • Systematical robust stability analysis and design scheme for the feedback linearization control systems via fuzzy modeling are proposed. It is considered that uncertainty and disturbances are included in the Takagi-Sugeno fuzzy models representing the nonlinear plants. Robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions and by converting the analysis and design problems into the linear matrix inequality optimization, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Application of Lyapunov Theory and Fuzzy Logic to Control Shunt FACTS Devices for Enhancing Transient Stability in Multimachine System

  • Kumkratug, P.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.672-680
    • /
    • 2012
  • This paper proposes the control strategy of the shunt Flexible AC Transmission System (FACTS) devices to improve transient stability in multimachine power system. The multimachine power system has high nonlinear response after severe disturbance. The concept of Lyapunov energy function is applied to derive nonlinear control strategy and it was found that the time derivative of line voltage is not only can apply to control the shunt FACTS devices in multimachine system but also is locally measurable signal. The fuzzy logic control is also applied to overcome the uncertainty of various disturbances in multimachine power system. This paper presents the method of investigating the effect of the shunt FACTS devices on transient stability improvement. The proposed control strategy and the method of simulation are tested on the new England power system. It was found that the shunt FACTS devices based on the proposed nonlinear control strategy can improve transient stability of multimachine power system.

FUZZY STABILITY OF QUADRATIC-CUBIC FUNCTIONAL EQUATIONS

  • Kim, Chang Il;Yun, Yong Sik
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.413-423
    • /
    • 2016
  • In this paper, we consider the functional equation f(x + 2y) - 3f(x + y) + 3f(x) - f(x - y) - 3f(y) + 3f(-y) = 0 and prove the generalized Hyers-Ulam stability for it when the target space is a fuzzy Banach space. The usual method to obtain the stability for mixed type functional equation is to split the cases according to whether the involving mappings are odd or even. In this paper, we show that the stability of a quadratic-cubic mapping can be obtained without distinguishing the two cases.