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FUZZY STABILITY OF QUADRATIC-CUBIC FUNCTIONAL

EQUATIONS

Chang Il Kim and Yong Sik Yun*

Abstract. In this paper, we consider the functional equation

f(x+ 2y) − 3f(x+ y) + 3f(x) − f(x− y) − 3f(y) + 3f(−y) = 0

and prove the generalized Hyers-Ulam stability for it when the target

space is a fuzzy Banach space. The usual method to obtain the stabil-

ity for mixed type functional equation is to split the cases according to
whether the involving mappings are odd or even. In this paper, we show

that the stability of a quadratic-cubic mapping can be obtained without

distinguishing the two cases.

1. Introduction and preliminaries

Katsaras [12] defined a fuzzy norm on a vector space to construct a fuzzy
vector topological structure on the space. Later, some mathematicians have
defined fuzzy norms on a vector space in different points of view. In particular,
Bag and Samanta [2], following Cheng and Mordeson [3], gave an idea of fuzzy
norm in such a manner that the corresponding fuzzy metric is of Kramosil and
Michalek type [11]. In this paper, we use the definition of fuzzy normed spaces
given in [2], [14], and [16].

Definition 1. Let X be a real vector space. A function N : X ×R −→ [0, 1] is
called a fuzzy norm on X if for any x, y ∈ X and any s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;
(N2) x = 0 if and only if N(x, t) = 1 for all t > 0;
(N3) N(cx, t) = N(x, t

|c| ) if c 6= 0;

(N4) N(x+ y, s+ t) ≥ min{N(x, s), N(y, t)};
(N5) N(x, ·) is a nondecreasing function of R and limt→∞N(x, t) = 1;
(N6) for any x 6= 0, N(x, ·) is continuous on R.

In this case, the pair (X,N) is called a fuzzy normed space.
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Definition 2. Let (X,N) be a fuzzy normed space. A sequence {xn} in X is said
to be convergent in (X,N) if there exists an x ∈ X such that limn→∞N(xn −
x, t) = 1 for all t > 0. In this case, x is called the limit of the sequence {xn} in
X and one denotes it by N − limn→∞ xn = x.

Definition 3. Let (X,N) be a fuzzy normed space. A sequence {xn} in X is
said to be Cauchy in (X,N) if for any ε > 0 and any t > 0, there exists an
m ∈ N such that N(xn+p − xn, t) > 1− ε for all n ≥ m and all positive integer
p,.

It is well known that every convergent sequence in a fuzzy normed space is
Cauchy. A fuzzy normed space is said to be complete if each Cauchy sequence
in it is convergent and a complete fuzzy normed space is called a fuzzy Banach
space.

In 1996, Isac and Rassias [10] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with
applications.

Definition 4. Let X be a non-empty set. Then a mapping d : X2 −→ [0,∞]
is called a generalized metric on X if d satisfies the following conditions:

(D1) d(x, y) = 0 if and only if x = y,
(D2) d(x, y) = d(y, x), and
(D3) d(x, y) ≤ d(x, z) + d(z, y).

In case, (X, d) is called a generalized metric space.

Theorem 1.1. [7] Let (X, d) be a complete generalized metric space and let
J : X −→ X be a strictly contractive mapping with some Lipschitz constant L
with 0 < L < 1. Then for each given element x ∈ X, either d(Jnx, Jn+1x) =∞
for all nonnegative integer n or there exists a positive integer n0 such that
(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0 ;
(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞}
and

(4) d(y, y∗) ≤ 1

1− L
d(y, Jy) for all y ∈ Y .

In 1940, Ulam proposed the following stability problem (cf. [23]):

“Let G1 be a group and G2 a metric group with the metric d. Given a
constant δ > 0, does there exist a constant c > 0 such that if a mapping
f : G1 −→ G2 satisfies d(f(xy), f(x)f(y)) < c for all x, y ∈ G1, then there
exists a unique homomorphism h : G1 −→ G2 with d(f(x), h(x)) < δ for all
x ∈ G1?”

In the next year, Hyers [9] gave a partial solution of Ulam,s problem for the case
of approximate additive mappings. Subsequently, his result was generalized by
Aoki ([1]) for additive mappings and by Rassias [21] for linear mappings to
consider the stability problem with unbounded Cauchy differences. During the
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last decades, the stability problem of functional equations have been extensively
investigated by a number of mathematicians (see [4], [5], [6], [8], and [17]).

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) (1)

is called a quadratic functional equation and every solution of the quadratic
functional equation is called a quadratic mapping. A generalized Hyers-Ulam
stability problem for (1) was proved by Skof [22] for mappings from a normed
space to a Banach space. Mirmostafaee and Moslehian [15] proved the stability
of (1) in fuzzy normed spaces. In 2001, Rassias [20] introduced the following
cubic functional equation

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 6f(y) = 0 (2)

and every solution of the cubic functional equation is called a cubic map-
ping. Some authors proved the stability for a cubic functional equation in
fuzzy normed spaces via fixed point technique([18]) . In prticular, some au-
thors proved the generalized Hyers-Ulam stability of quadratic-cubic functional
equations in fuzzy Banach spaces([19]). In most of papers, authors proved the
stability for mixed type functional equations by dividing even mappings caese
and odd mappings case.

In this paper, we consider the following new functional equation

f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 3f(y) + 3f(−y) = 0. (3)

which is a quadratic-cubic functional equation and prove the generalized Hyers-
Ulam stability for (3) in fuzzy Banach spaces. The usual method that has been
employed by many authors to obtain the stability of mixed type functional
equations is to split the cases according to whether the involving mappings are
odd or even. In this paper, we show that, in contrast to the usual one, the
stability of a quadratic-cubic mapping f : X −→ Y can be obtained without
distinguishing the two cases.

Throughout this paper, we assume that X is a linear space, (Y,N) is a fuzzy
Banach space, and (Z,N ′) is a fuzzy normed space.

2. The Generalized Hyers-Ulam stability for (3)

In this section, we prove the generalized Hyers-Ulam stability for the func-
tional equation (3) in fuzzy Banach spaces. For any mapping f : X −→ Y ,
let

fo(x) =
f(x)− f(−x)

2
, fe(x) =

f(x) + f(−x)

2
.

We start with the following lemma.

Lemma 2.1. A mapping f : X −→ Y satisfies (3) and f(0) = 0 if and only if
f is a quadratic-cubic mapping.
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Proof. Suppose that f : X −→ Y satisfies (3). Then we have

fo(x+ 2y)− 3fo(x+ y) + 3fo(x)− fo(x− y)− 6fo(y) = 0.

for all x, y ∈ X and so fo satisfies (2). Similarly, fe satisfies (1) and thus
f = fe + fo is a quadratic-cubic mapping. The converse is trivial. �

For any mapping f : X −→ Y , we define the difference operator Df : X2 −→
Y by

Df(x, y) = f(x+ 2y)− 3f(x+ y) + 3f(x)− f(x− y)− 3f(y) + 3f(−y)

for all x, y ∈ X.

Theorem 2.2. Assume that φ : X2 −→ Z is a function such that

N ′(φ(x, y), t) ≥ N ′
(L

8
φ(2x, 2y), t

)
(4)

for all x, y ∈ X, t > 0 and some L with 0 < L < 1. Let f : X −→ Y be a
mapping such that f(0) = 0 and

N(Df(x, y), t) ≥ N ′(φ(x, y), t) (5)

for all x, y ∈ X and all t > 0. Then there exists a unique quadratic-cubic
mapping F : X −→ Y such that

N
(
F (x)− f(x),

L

8(1− L)
t
)
≥ min{N ′(φ(0, x), t), N ′(φ(0,−x), t)} (6)

for all x ∈ X and all t > 0.

Proof. Consider the set S = {g | g : X −→ Y } and the generalized metric d on
S defined by

d(g, h) = inf{c ∈ [0,∞) | N(g(x)− h(x), ct) ≥ min{N ′(φ(0, x), t), N ′(φ(0,−x), t)},
∀x ∈ X,∀t > 0}.

Then (S, d) is a generalized complete metric space([13]). Define a mapping
J : S −→ S by

Jg(x) = 6g(
x

2
)− 2g(−x

2
)

for all g ∈ S and all x ∈ X. Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞).
Then by (4), we have

N(Jg(x)− Jh(x), cLt)

= N
(

6g
(x

2

)
− 6h

(x
2

)
− 2g

(
− x

2

)
+ 2h

(
− x

2

)
, cLt

)
≥ min

{
N
(
g
(x

2

)
− h
(x

2

)
,
cL

8
t
)
, N
(
g
(
− x

2

)
− h
(
− x

2

)
,
cL

8
t
)}

≥ min{N ′(φ(0, x), t), N ′(φ(0,−x), t)}

for all x ∈ X and all t > 0. Hence we have d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S
and so J is a strictly contractive mapping.
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Next, we claim that d(Jf, f) <∞. Putting x = 0 and y = x in (5), we get

N(f(2x)− 6f(x) + 2f(−x), t) ≥ N ′(φ(0, x), t)

for all x ∈ X, t > 0 and hence

N(f(x)− Jf(x),
L

8
t) = N

(
f(x)− 6f

(x
2

)
+ 2f

(
− x

2

)
,
L

8
t
)

≥ N ′
(
φ
(

0,
x

2

)
,
L

8
t
)
≥ N ′(φ(0, x), t)

≥ min{N ′(φ(0, x), t), N ′(φ(0,−x), t)}

for all x ∈ X and all t > 0. So we have d(f, Jf) ≤ L
8 < ∞. By Theorem

1.1, there exists a mapping F : X −→ Y which is a fixed point of J such that
d(Jnf, F )→ 0 as n→∞. By induction, there are sequences {an} and {bn} in
R+ such that

Jnf(x) = anf
( x

2n

)
− bnf

(
− x

2n

)
for all x ∈ X and n ∈ N, where{

6an + 2bn = an+1

2an + 6bn = bn+1

(7)

for all n ∈ N. Then we get

F (x) = N − lim
n→∞

[
anf

( x
2n

)
− bnf

(
− x

2n

)]
(8)

for all x ∈ X. Moreover, by (7), we get

4(an − bn) = an+1 − bn+1, 8(an + bn) = an+1 + bn+1

for all n ∈ N and by (8), we have

Fe(x) = N − lim
n→∞

(an − bn)fe

( x
2n

)
= N − lim

n→∞
22nfe

( x
2n

)
,

Fo(x) = N − lim
n→∞

(an + bn)fo

( x
2n

)
= N − lim

n→∞
23nfo

( x
2n

)(9)

for all x ∈ X. Replacing x, y by x
2n , x

2n in (5), respectively, by (4), we have

N
(
Dfe

( x
2n
,
y

2n

)
,
t

22n

)
≥ min

{
N
(
Df
( x

2n
,
y

2n

)
,
t

22n

)
, N
(
Df
(
− x

2n
,− y

2n

)
,
t

22n

)}
≥ min

{
N ′
(
φ
( x

2n
,
y

2n

)
,
t

22n

)
, N ′

(
φ
(
− x

2n
,− y

2n

)
,
t

22n

)}
≥ min

{
N ′
(
φ(x, y),

2n

Ln
t
)
, N ′

(
φ(−x,−y),

2n

Ln
t
)}

for all x, y ∈ X, t > 0, and all n ∈ N. Since 0 < L < 1, letting n → ∞ in
the last inequality, Fe is a solution of (3). Similarly, Fo is a solution of (3) and
hence F = Fe + Fo is a solution of (3). By Lemma 2.1, F is a quadratic-cubic
mapping. Since d(f, Jf) ≤ L

8 , by Theorem 1.1, we have (6).
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Now, we will show the uniqueness of F . Let G be a quadratic-cubic mapping
with (6). Then clearly, G is a fixed point of J and by (6), we get

d(Jf,G) = d(Jf, JG) ≤ Ld(f,G) ≤ L2

8(1− L)
<∞ (10)

and hence by (3) in Theorem 1.1, F = G. �

Related with Theorem 2.2, we can also have the following theorem. And the
proof is similar to that of Theorem 2.2.

Theorem 2.3. Assume that φ : X2 −→ Z is a function such that

N ′(φ(2x, 2y), t) ≥ N ′(4Lφ(x, y), t) (11)

for all x, y ∈ X, t > 0 and some L with 0 < L < 1. Let f : X −→ Y be a
mapping such that f(0) = 0 and

N(Df(x, y), t) ≥ N ′(φ(x, y), t) (12)

for all x, y ∈ X and all t > 0. Then there exists a unique quadratic-cubic
mapping F : X −→ Y such that

N
(
F (x)− f(x),

1

4(1− L)
t
)
≥ min{N ′(φ(0, x), t), N ′(φ(0,−x), t)} (13)

for all x ∈ X and all t > 0.

Proof. Consider the set S = {g | g : X −→ Y } and the generalized metric d on
S defined by

d(g, h) = inf{c ∈ [0,∞) | N(g(x)− h(x), ct) ≥ min{N ′(φ(0, x), t), N ′(φ(0,−x), t)},
∀x ∈ X,∀t > 0}.

Then (S, d) is a generalized complete metric space(See [13]). Define a mapping
J : S −→ S by

Jg(x) =
3

16
g(2x) +

1

16
g(−2x)

for all g ∈ S and all x ∈ X. Let g, h ∈ S and d(g, h) ≤ c for some c ∈ [0,∞).
Then by (11), we have

N(Jg(x)− Jh(x), cLt) = N
( 3

16
g(2x)− 3

16
h(2x) +

1

16
g(−2x)− 1

16
h(−2x), cLt

)
≥ min{N(g(2x)− h(2x), 4cLt), N(g(−2x)− h(−2x), 4cLt)}
≥ min{N ′(φ(0, x), t), N ′(φ(0,−x), t)}

for all x ∈ X and all t > 0. Hence we have d(Jg, Jh) ≤ Ld(g, h) for any g, h ∈ S
and so J is a strictly contractive mapping.

Next, we claim that d(Jf, f) <∞. Putting x = 0 and y = x in (12), we get

N(f(2x)− 6f(x) + 2f(−x), t) ≥ N ′(φ(0, x), t)
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for all x ∈ X, t > 0 and hence

N(Jf(x)− f(x),
1

4
t)

= N
( 3

16

[
f(2x)− 6f(x) + 2f(−x)

]
+

1

16

[
f(−2x)− 6f(−x) + 2f(x)

]
,

1

4
t
)

≥ min{N ′(φ(0, x), t), N ′(φ(0,−x), t)}

for all x ∈ X, t > 0 and so we have d(f, Jf) ≤ 1
4 < ∞. By Theorem 1.1,

there exists a mapping F : X −→ Y which is a fixed point of J such that
d(Jnf, F ) → 0 as n → ∞ and by (4) in Theorem 1.1, we have (13). By
induction, there are sequences {an} and {bn} in R+ such that

Jnf(x) = anf(2nx) + bnf(−2nx)

for all x ∈ X and all n ∈ N, where{
3
16an + 1

16bn = an+1

1
16an + 3

16bn = bn+1

(14)

for all n ∈ N. Then we get

F (x) = N − lim
n→∞

[anf(2nx) + bnf(−2nx))] (15)

for all x ∈ X and by (14), we get

1

4
(an + bn) = an+1 + bn+1,

1

8
(an − bn) = an+1 − bn+1

for all n ∈ N. By (15), we obtain

Fe(x) = N − lim
n→∞

(an + bn)fe(2
nx) = N − lim

n→∞

1

22n
fe(2

nx),

Fo(x) = N − lim
n→∞

(an − bn)fo(2nx) = N − lim
n→∞

1

23n
fo(2nx)

(16)

for all x ∈ X. By (12), we have

N(Dfe(2
nx, 2ny), 22nt)

≥ min{N(Df(2nx, 2ny), 22nt), N(Df(−2nx,−2ny), 22nt)}
≥ min{N ′(φ(2nx, 2ny), 22nt), N ′(φ(−2nx,−2ny), 22nt)}

≥ min
{
N ′
(
φ(x, y),

1

Ln
t
)
, N ′

(
φ(−x,−y),

1

Ln
t
)}

for all x, y ∈ X and all n ∈ N. Letting n→∞ in the last inequality, Fe satisfies
(3). Similarly, Fo satisfies (3) and so F = Fe + Fo satisfies (3). By Lemma 2.1,
F is a quadratic-cubic mapping.

Now, we show the uniqueness of F . Let G be a quadratic-cubic mapping
with (13). Then clearly, G is a fixed point of J and

d(Jf,G) = d(Jf, JG) ≤ Ld(f,G) ≤ L

4(1− L)
<∞ (17)
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and hence by (3) in Theorem 1.1, F = G. �

We can use Theorem 2.2 and Theorem 2.3 to get a classical result in the
framework of normed spaces. For example, it is well known that for any normed
space (X, || · ||), the mapping NX : X × R −→ [0, 1], defined by

NX(x, t) =

{
0, if t ≤ 0

t
t+||x|| , if t > 0

is a fuzzy norm on X. In [14], [15] and [16], some examples are provided for the
fuzzy norm NX and other fuzzy norms. Here especially using the fuzzy norm
NX = N ′X and taking φ(x, y) = ‖x‖p‖y‖p+‖x‖2p+‖y‖2p, we have the following
example.

Corollary 2.4. Let f : X −→ Y be a mapping such that f(0) = 0 and

‖Df(x, y)‖ ≤ ‖x‖p‖y‖p + ‖x‖2p + ‖y‖2p. (18)

for all x, y ∈ X and a fixed positive real number p with 0 < p < 1 or 3
2 < p.

Then there exists a unique quadratic-cubic mapping F : X −→ Y such that

‖F (x)− f(x)‖ ≤


1

22p − 8
‖x‖2p, if 3

2 < p,

1

8− 22p
‖x‖2p, if 0 < p < 1

for all x ∈ X.

The following example shows that the inequality (18) is not stable for p = 1.

Remark 1. Define mappings s, t : R −→ R by

s(x) =

{
x2, if |x| < 1

1, ortherwise,
t(x) =


x3, if |x| < 1

−1, if x ≤ −1

1, if 1 ≤ x

and a mapping f : R −→ R by

f(x) =

∞∑
n=0

[
s(2nx)

4n
+
t(2nx)

8n
]

We will show that there is a positive real number M such that

|Df(x, y)| ≤M(|x||y|+ |x|2 + |y|2) (19)

for all x, y ∈ R. But there do not exist a quadratic-cubic mapping F : R −→ R
and a non-negative constant K such that

|F (x)− f(x)| ≤ K|x|2 (20)

for all x ∈ R.
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Proof. Note that so(x) = 0 and to(x) = t(x) for all x ∈ R. Hence |fo(x)| ≤ 8
7 .

First, suppose that 1
64 ≤ |x||y| + |x|

2 + |y|2. Then |Dfo(x, y)| ≤ 1024(|x||y| +
|x|2 + |y|2). Now, suppose that 1

64 > |x||y| + |x|2 + |y|2. Then there is a
non-negative integer m such that

1

23m+9
≤ |x||y|+ |x|2 + |y|2 < 1

23m+6

and since |x| < 1 and |y| < 1,

23m|x|3 < 23m|x|2 < 1

64
, 23m|y|3 < 23m|y|2 < 1

64
.

Hence we have

{2m(x+ 2y), 2m(x± y), 2mx, 2my} ⊆ {z ∈ R | |z|3 < 1}

and so for any n = 0, 1, 2, · · ·,m,

Dt0(2nx, 2ny) = 0.

Thus

|Dfo(x, y)| =
∣∣∣ ∞∑
n=0

1

8n
Dto(2nx, 2ny)

∣∣∣ ≤ ∞∑
n=m+1

∣∣∣ 1

8n
Dto(2nx, 2ny)

∣∣∣ ≤ 2

23m

≤ 210(|x||y|+ |x|2 + |y|2).

Note that te(x) = 0 and se(x) = s(x) for all x ∈ X. Hence |fe(x)| ≤ 4
3

for all x ∈ R, First, suppose that 1
64 ≤ |x||y| + |x|

2 + |y|2. Then |Dfe(x, y)| ≤
2048
3 (|x||y|+|x|2+|y|2) for all x, y ∈ R. Now, suppose that 1

64 > |x||y|+|x|
2+|y|2.

Then there is a non-negative integer k such that

1

22k+8
≤ |x||y|+ |x|2 + |y|2 < 1

22k+6
(21)

and so

2k|x| < 1

8
, 2k|y| < 1

8
.

Hence we have

{2k(x+ 2y), 2k(x± y), 2kx, 2ky} ⊆ {z ∈ R | |z|2 < 1}

and so for any n = 0, 1, 2, · · ·, k,

Dse(2
nx, 2ny) = 0.

Thus∣∣∣Dfe(x, y)
∣∣∣ =

∣∣∣ ∞∑
n=0

1

4n
Dse(2

nx, 2ny)
∣∣∣ =

∣∣∣ ∞∑
n=k+1

1

4n
Dse(2

nx, 2ny)
∣∣∣ ≤ 8

3
· 1

22k

=
2048

3
· 1

22k+8
≤ 2048

3
(|x||y|+ |x|2 + |y|2).

Hence there is a positive real number M with (19).
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Suppose that there exist a quadratic mapping Q : R −→ R, a cubic mapping
C : R −→ R, and a non-negative constant K with (20).

Since |f(x)| ≤ 60
21 , by (20), we have

− 60

21 · n3
− K|x|2

n
≤ Q(x)

n
+ C(x) ≤ 60

21 · n3
+
K|x|2

n

for all x ∈ X and all positive integers n. Hence

C(x) = 0

for all x ∈ X. Hence we get

|f(x)−Q(x)| ≤ K|x|2 (22)

for all x ∈ X. Since |f(x)| ≤ 60
21 , by (22), we have

− 60

21 · n2
−K|x|2 ≤ Q(x) ≤ 60

21 · n2
+K|x|2

for all x ∈ X and all positive integers n. Hence we obtain

|Q(x)| ≤ K|x|2 (23)

for all x ∈ X. By (22) and (23), we get

|f(x)| ≤ 2K|x|2 (24)

for all x ∈ X and hence we get

|fe(x)| ≤ 2K|x|2 (25)

for all x ∈ X. Take a positive integer l such that l > 2K and pick x ∈ R with
0 < 2lx < 1. Since 0 < 2lx < 1 and so

fe(x) =

∞∑
n=0

s(2nx)

4n
≥

l−1∑
n=0

s(2nx)

4n
≥ lx2 > 2Kx2

which contradicts to (25). �
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