Generally, it is known that human beings have both emotion and rationality. Especially, emotion is so subjective that human beings might act in different way for the same environment according to their own emotion. Emotion also plays very important role in communication with someone else For an agent, even though it is designed to act delicately, when it is designed without internal emotion, it can not interact dynamically just like human beings. In this paper, we suggest an agent which action is effected by not only rationality but also emotion to make it interact with human beings dynamically. It is composed of supervised learning, SOM (Self-Organizing Map) and fuzzy decision.
Ha, Sang-Hyoung;Kim, Seong-Hyun;Kim, Byeong-Kwoan;Kim, Seong-Joo;Jeon, Hong-Tae
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.276-279
/
2003
Generally, it is known that human beings have both emotion and rationality. Especially, emotion is so subjective that human beings might act in different way for the same environment according to their own emotion. Emotion also plays very important role in communication with someone else. For an agent, even though it is designed to act delicately, when it is designed without internal emotion, it can not interact dynamically just like human beings. In this paper, we suggest an agent which action is effected by not only rationality but also emotion to make it interact with human beings dynamically. It is composed of supervised learning, SOM (Self-Organizing Map) and fuzzy decision.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.06a
/
pp.585-590
/
1998
The purpose of this paper is to develop a neurofuzzy modeling & inference system which can determine principle dimensions and hull factors in an initial ship design. Neurofuzzy modeling & inference for a hull form design (NeFHull) applies the given input-output data to the fuzzy theory. NeFHull also deals the fuzzificated values with neural networks. NeFHull redefines normalized input-output data as membership functions and executes the fuzzficated information with backporpagation-neural -networks. A hybrid learning algorithms utilized in the training of neural networks and examining the usefulness of suggested method through mathematical and mechanical examples.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.4
no.1
/
pp.119-124
/
2004
Real data as web log file tend to be incomplete. But we have to find useful knowledge from these for optimal decision. In web log data, many useful things which are hyperlink information and web usages of connected users may be found. The size of web data is too huge to use for effective knowledge discovery. To make matters worse, they are very sparse. We overcome this sparse problem using Markov Chain Monte Carlo method as multiple imputations. This missing value imputation changes spare web data to complete. Our study may be a useful tool for discovering knowledge from data set with sparseness. The more sparseness of data in increased, the better performance of MCMC imputation is good. We verified our work by experiments using UCI machine learning repository data.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.7
no.4
/
pp.285-294
/
2007
In this paper, we investigate a novel online estimation algorithm for dynamic Bayesian network(DBN) parameters, given as conditional probabilities. We sequentially update the parameter adjustment rule based on observation data. We apply our algorithm to two well known representations of DBNs: to a first-order Markov Chain(MC) model and to a Hidden Markov Model(HMM). A sliding window allows efficient adaptive computation in real time. We also examine the stochastic convergence and stability of the learning algorithm.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.7
no.4
/
pp.242-248
/
2007
This paper analyzes on the chaos characteristics of the chaotic neural networks and presents the convergence condition. Although the transient chaos of neural network sould be beneficial to overcome the local minimum problem and speed up the learning, the permanent chaotic response gives adverse effect on optimization problems and makes neural network unstable in general. This paper investigates the dynamic characteristics of the chaotic neural networks with the chaotic dynamic neuron, and presents the convergence condition for stabilizing the chaotic neural networks.
International Journal of Fuzzy Logic and Intelligent Systems
/
v.10
no.4
/
pp.314-318
/
2010
Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.
Proceedings of the Korean Society of Computer Information Conference
/
2009.01a
/
pp.25-30
/
2009
패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 가중치 평균 분류기는 가중치를 적절히 설정함으로써 뛰어난 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 가중치는 인식 문제 분야의 특성이나 해당 전문가의 지식이나 주관적 경험을 기반으로 설정되므로 설정된 가중치의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 가중치 평균 분류기의 가중치를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 가중치 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터들 중의 하나인 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.389-391
/
2003
컴퓨터 학습의 군집화는 주어진 데이터를 서로 유사한 몇 개의 집단으로 묶는 작업을 수행한다. 군집화를 위한 유사도 결정을 위한 측도는 많은 기법들에서 매우 다양한 측도들이 사용되고 또한 연구되어 왔다. 하지만 군집화의 결과에 대한 성능측정에 대한 객관적인 기준 설정이 어렵기 때문에 군집화 결과에 대한 해석은 매우 주관적이고 애매한 경우가 많다. 퍼지 군집화는 이러한 애매한 군집화 문제에 있어서 융통성 있는 군집 결정 방안을 제시해 준다. 각 개체들이 특정 군집에 속하게 될 퍼지 멤버 함수값을 원소로 하는 유사도 행렬을 통하여 군집화를 수행한다. 본 논문에서는 베이지안 학습을 통하여 군집화를 위한 퍼지 멤버 함수값을 구하였다. 본 연구에서는 최적의 퍼지 군집화 수행을 위하여 베이지안 학습 기반의 퍼지 규칙을 추출하였다. 인공적으로 만든 데이터와 기존의 기계 학습 데이터를 이용한 실험을 통하여 제안 방법의 성능을 확인하였다.
Journal of the Korea Academia-Industrial cooperation Society
/
v.7
no.3
/
pp.379-384
/
2006
The paper describes a method of user feedback in order to enhance the retrieval effectiveness. In this paper, to overcome a weak point of the existing feedback function adapting fuzzy technique, we proposed the interaction function using gaussian function that gives different learning rate according to choice of components with same function. And, we grade degree that the user opinion is reflected to a system by applying user profile to the feedback function. User retrieval feedback method is adaptive retrieval method that makes a slow change for a long time using feedback function adapting gaussian function and user profile.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.