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Abstract 
Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by 

several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project 

introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as 

the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the 

information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability 

of the secondary structure converges.  
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1. Introduction  Although there has been relatively good success with the 
ANN, there is much space to improve yet there is seemingly a 
limit to how much it actually has in recent times. This is mostly 
due to the rigid structure of the ANN that does not allow 
changes in the input as more information is extracted, as well 
as the explosion of free parameters that have to be computed as 
the input size grows. 

 

Machine learning approaches are best suited for areas where 
there are large amounts of data with little theory behind the 
correlation of the data. This situation particularly applies to the 
prediction of protein secondary structures, where there is 
clearly a relationship between the sequences of amino acids and 
the resulting structure, but little explanation as to why. 
Especially in modern days, the advancements in technology has 
provided vast amounts of protein secondary structure data, yet 
much is still unknown about the underlying biological  
mechanism of the structures. 

Bayesian Inference, on the other hand, does not directly 
generate models like the ANN. It only concerns itself with 
assessing the value of the models with respect the available 
data and information. With a strong foundation in probability 
theory, Bayesian Inference provides a principled and rigorous 
approach to inference in situations of uncertainty such as 
predicting secondary structures. The main drawback is that 
asides being computationally intensive, the Bayesian Inference 
method can be overly sensitive to the likelihood model or prior 
probability set that it uses. Another issue is that fact that the 
Bayesian method assumes independency between neighboring 
amino acids[6]. 

Among the more popular machine learning methods used in 
this area are Artificial Neural Networks (ANN)[1,2] and 
Bayesian Inference methods. The ANN has the ability to take 
in large amounts of data and extract the relational information 
to approximate a model that closely fits the actual model that 
ties the data together, even through reasonable amount of 
missing data and noise. There has been a lot of work on 
predicting secondary structure using ANNs [3,4,5,6,7,8,9,10], 
sometimes in combination with other methods [11,12,13], and 
some of the of the more recent works include the PSI-
BLAST[14] or PSIPRED[9,15] method that are still used today. 
PSIPRED is important in that it has so far been known to return 
the most accurate results in predicting secondary structures 
using protein profiles. Other methods that use protein profiles 
for structure prediction include PPRODO[16], SVMpsi[17,18], 
fragment assembly methods[19] and profile-profile alignment 
methods[20,21]. Using the same input vectors as PSIPRED, the 
nearest neighbor method is also used such as by 
PREDICT[22,23] to by step the training process as well. 

 
 

2. Overview of the Method 
 
The approach this paper makes is to use ANNs within a 

Bayesian framework to exploit the advantages of both methods 
while eliminating the drawbacks. Despite the rigid and non-
dynamic structure of an ANN, we can use multiple ANN 
models for different sequence lengths of amino acids while 
assessing the value of each model within the Bayesian 
framework. This process is shown in [Fig. 1].  

By using the ANNs as likelihood models, we can alternate 
between models of different window sizes and varying degrees 
of neighboring information to take advantage strong 
architectural diversity[10]. For each iteration in the Bayesian 

Manuscript received Apr. 5, 2010; revised Sep. 24, 2010; 
Accepted Sep. 30, 2010 

314 
 
 



 

 

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models 

process, the previous probability, or prior, of a particular amino 
acid being either an Alpha-helix, Beta-sheet, or Turn will be 
updated according to an ANN models outputs that also takes 
the prior into account as well. This leads to a convergence of 
probabilities that tell us which structure the amino acid in 
question most likely is. 

 

 
Fig. 1 Process of calculating the likelihood probability 

 
Artificial Neural Networks are used to calculate the 

likelihood probability. The outputs are normalized and 
multiplied with the prior probabilities to find the posterior 
probability of each secondary structure. These probabilities are 
used as priors in the next iteration. 
 

2.1 Multilayered Perceptron Neural Net Likelihood Model  

We start by explaining the ANN architecture that will be 
used within the Bayesian framework. ANNs were originally 
developed to model the learning and processing mechanisms of 
the brain[1,2]. Although it is now known that the ANN does 
not accurately represent the workings of the brain, its ability to 
approximate non-linear functions in high dimensions proves 
ANN to be a valuable tool in searching for models to 
reasonably fit large amounts of data. The algorithm introduced 
in this paper uses one of the more simple types of networks – a 
standard 1 hidden layered fully connected Multilayered 
Perceptron (MLP) with sigmoid activation functions.  

We first concern ourselves with the encoding of the sequence 
input and the interpretation of the output. Despite the initial 
intuition that encoding the sequence as input using physical and 
chemical features of potential relevance would outperform a 
more direct encoding scheme, due to the nature of the MLP, 
most of the information is discarded before reaching the output 
level. This algorithm uses a slight variation of the orthogonal 
encoding scheme where an amino acid would be encoded 20 
nodes. Each of the nodes represents the 20 amino acids, while 
an input of all zeroes represents a terminal position within a 
window. Although this sparse encoding scheme has the 
disadvantage of being wasteful while increasing the number of 
network connections, it does not lose any data during the 
encoding process and is easier for the MLP to work with. A 
secondary structure was encoded with 3 nodes in a similar 
fashion, with each node representing an Alpha, Beta, or Turn 

structure. These encoding schemes were used to take a set 
number of neighboring amino acids within a certain window 
size as input along with each of their secondary structure, and 
the true secondary structure of the amino acid in question.  
The output is the amino acid in question, also represented by 
the orthogonal encoding scheme. Although the outputs do not 
represent the conditional probability of a secondary structure 
given the neighboring amino acid information, they are a 
representation of this probability with respect to the inputs, so 
the outputs are later normalized to be used as the likelihood 
probability within the Bayesian framework. The final 
architecture of the ANN with a window size of 3 is shown in 
[Fig. 2]. 

The next issue is deciding on the number of models and the 
different window sizes. It is known that large windows perform 
better in longer sequences since more information is used, 
while short windows perform better in shorter sequences of 
amino acids since much of the unneeded neighboring 
information is left out and the inputs become less noisy[10]. 
Previous work with similar architectures[24,4] have shown that 
a window size of 13 to 15 achieves the best performance. 
However, within the context of the Bayesian Inference process, 
we will also have to take into consideration the fact that the 
MLP is using prior probabilities as inputs as well. This means 
the algorithm will have to take in less neighboring prior 
information than the optimal window size while the Bayesian 
process is still converging. Assuming that 13 is the optimal size, 
we choose two smaller window sizes of 3 and 7, and so we 
have a total of three MLP models with window sizes W = {3, 7, 
13}.  

Finally, through experimentation, about 40 hidden nodes 
were shown to perform the best for all three MLP models.  
 

 
Fig. 2  An ANN with a window size of 3 

N with a window size of 3 

 

In [Fig.2], An ANN with a window size of 3 is shown. The 
solid colored inputs or output are each a group of 20 nodes 
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representing the neighboring amino acids. The double-outlined 
inputs are each a group of 3 nodes representing the neighboring 
secondary structures. The single input with a bold outline 
represents a group of 3 input nodes representing the secondary 
structure of the amino acid in question. Normalizing the 
outputs gives us the likelihood probability. 
 

2.2 Bayesian Inference Scheme  

Now that the MLP models have been set, we turn to the 
overall Bayesian framework that the MLPs will run in. The 
Bayesian equation that is used is shown below. 

 P(D|H) = P(H|D) * P(D) 

 Posterior = likelihood * prior 

The reason the denominator is missing from the RHS of the 
Bayes equation is because its only function is to act as a 
normalization factor for the LHS of the equation. Within the 
Bayesian Inference process, each time a set of probabilities are 
found, they are normalized before the next iteration so the 
denominator is not required.  

Each MLP model serves as the likelihood model while a 3 x 
n table of probabilities are kept to serve as the posterior and 
prior, where n = the length of the sequence and each row 
contains the probabilities of the amino acid being one of the 3 
Alpha-helix, Beta-sheet or Turn structure. Starting with the first 
amino acid in the sequence, the algorithm runs through entire 
sequence one letter at a time, extracting the neighboring amino 
acid sequence information according to the set window size of 
the particular MLP as well as each of their prior probabilities 
from the probability table. This information is the used as input 
for the Feedforward algorithm and the output is normalized, 
multiplied to each respective prior, then set in a posterior 
probability table. Once the algorithm runs through the entire 
sequence, the posterior probability table is used as the prior 
probability table for the next iteration. This process is visually 
shown in [Fig. 3]. 
 

 
Fig. 3 Process of Bayesian Inference Scheme 

 
In [Fig. 3], the arrow represents the amino acid the MLP is 

running on. Alpha, Beta, and Turn structures are represented as 
lowercase a, b, and t, respectively. P(S) is the probability of 

being secondary structure S and P(S|V) is the conditional 
probability of being secondary structure S given that the amino 
acid is V, where S = {a, b, t}. 

The algorithm alternates between MLP models of different 
window sizes for the iterations and this process continues until 
there is convergence. Experimentation shows that the order in 
which the MLPs of different window sizes are used was not 
important since the direction in which the probabilities 
converge stays the same in each case and so the Bayesian 
process effectively eliminates the ordering dependencies. 

One final issue with this Bayesian process is the sensitivity 
to the initial prior probabilities. It is shown that it is possible to 
get structure information from position specific scoring 
matrices for machine learning procceses[9]. Although these 
scoring matrices are not actual probabilities, like the outputs for 
the MLP, they contain information that represents the structural 
probabilities according to the position of each amino acid. The 
prior probability table used in this case was initialized to the 
normalized Chou-Fasman parameters[25].  

Finally, the amino acid is classified as the secondary 
structure with the highest probability from the posterior table. 

 
 

3. Experimentation and Analysis 
 

Prior to running the algorithm, the MLP models had to be 
trained offline. 50 proteins selected from the Protein Data Bank 
(PDB)[26] were used as the training data. The training data was 
also carefully chosen to include the same number of proteins 
from each of the five classes; 10 random proteins each from 
classes of all Alpha, all Beta, Alpha and parallel Beta-sheets, 
Alpha and anti-parallel Beta-sheets, and multi-domain proteins. 
10 different proteins, 2 from each of the five classes, were also 
used as a validation set. Holley and Karplus[4] had achieved an 
overall predictive accuracy of 63.2% using an MLP model with 
the same encoding techniques to predict secondary structures, 
and a similar result was attained with these MLP models in 
predicting the amino acids. The Bayesian Inference process 
was used with the three MLP models on 5 validation sets, each 
consisting of 2 proteins from each of the 5 classes. [Tab. 1] and 
[Tab. 2] show the results using the validation sets of all Alpha, 
all Beta, Alpha and parallel Beta-sheets, Alpha and anti-parallel 
Beta-sheets, and multi-domain proteins. 

From [Tab. 1] we can see that the accuracy predicting 
proteins of mostly single secondary structures was higher than 
that of mixed secondary structures. Using multiple window size 
MLPs did show its advantages, and not only were these results 
significantly better compared to that of using a single MLP for 
structure prediction as reported by Holley and Karplus[4], but 
the algorithm did reasonably well even against the proteins of 
mixed structures. Using multiple MLPs allowed the algorithm 
to take into account not only neighboring information that were 
nearby, but also the information that are faraway on the 
sequence yet actually geometrically close when the proteins are 
folded in reality. 
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Table 1. The results using the validation sets 

Alpha Beta Turn  
CLASS a b t a b t a b t 

Accuracy 

A 284 26 61 36 95 47 23 14 68 .6834 

B 129 27 39 42 263 21 19 32 72 .7205 

A/B 156 29 89 57 87 32 28 9 76 .5666 

A+B 103 9 29 52 67 47 20 11 67 .5852 

A, B 88 9 60 67 97 52 11 5 42 .5267 

In [Tab. 1], the rows are the different classes the proteins were selected from. All Alpha, all Beta, Alpha and parallel Beta-sheets, 
Alpha and anti-parallel Beta-sheets, and multi-domain proteins are represented as A, B, A/B, A + B, A, B, respectively. Each column 
shows the predicted structures a, b, and t, for the true structures Alpha, Beta and Turn. 

 

Table 2.  The accuracy of prediction each of the three structures

 Alpha Beta Turn 

Accuracy .6678 .5734 .6539 

 

Comparing the prediction results of the mixed structure 
proteins, it is also clear that multi domain proteins were harder 
to predict than the proteins with all parallel or anti-parallel 
beta-sheets. Although this is intuitive as multi-domain proteins 
have a more complex underlying structure, it also signifies that 
the sequencing and parallelism of the beta-sheets does play a 
role in deciding the secondary structure of the amino acids. 
This is also confirmed by the fact that the accuracy of Alpha-
helices is significantly higher than the Beta-sheets in [Tab. 2], 
and this correlation of data and the parameters also gives us 
some insight into the underlying biological mechanism that 
decides the secondary structures of proteins.  

In [Tab. 2], it can be clearly seen that the Turn predictions 
have a high prediction accuracy compared to the Beta-sheet as 
well. This was most likely due to the usage of orthogonal 
encoding of the amino acids for input. Since the neighboring 
amino acid MLP inputs for the portion of the window that falls 
off the sequence is set to all zero and since Turns usually occur 
at the end of protein sequences, the MLPs easily detected and 
predicted the Turns near the end of the sequences by the 
presence of the zeros as input.  

Overall, a comparison with the 63.2% accuracy that Holley 
and Karplus[4] had previously achieved shows that an MLP 
used within a Bayesian framework does significantly better at a 
maximum 72.05% accuracy. This is nearly a 9% increase in the 
best accuracy results which also show that standard Neural 
Network methods can easily be enhanced through a Bayesian 
scheme.  
 

 

4. Conclusion and Future work 
 
An algorithm to predict protein secondary structures using 

Bayesian Inference and MLPs was presented. The algorithm 
took advantage of using multiple MLPs to estimate the 
likelihood probability for the Bayesian Inference process and as 
a result, more information could be extracted for the prediction. 

This led the algorithm to produce better results than using a 
single MLP and shows potentials for further investigation. 

Only simple inputs, namely the neighboring amino acids and 
secondary structures, were considered in this experiment but 
showed promising results. By providing more information to 
the MLP models such as the parallelism of the Beta-sheets, the 
geometrical angles, and the amino acids, or more experiments 
using various Neural Network models could provide more 
insight into the relationship between the amino acids and the 
secondary structures they form, as well as an improvement in 
prediction accuracy. 
 

 

References 
 
[1] Bishop, C.M., Neural Networks for Pattern Recognition. 

Clarendon Press, Oxford, 1995. 
[2] Haykin, S., Neural Networks and Learning Machines, 

Third Edition, Pearson Inc, ISBN-10:0-13-147139-2, 2008. 
[3] Bohr, H., Bohr, J., Brunak, S., Cotterill, R.M.J., Lautrup, 

B., Nørskov, L., Olsen, O.H., and Petersen, S. B., “Protein 
secondary structures and homology by neural networks: 
The α-helices in rhodopsin”, FEBS Letters, 241, pp.223–
228, 1988. 

[4] Holley, L.H., and Karplus, M., “Protein secondary 
structure prediction with a neural network”, Proc. Nat. 
Acad. Sci. USA, 86, pp.152–156, 1989. 

[5] Kneller, D.G., Cohen, F.E., and Langridge, R., 
“Improvements in protein secondary structure prediction 
by an enhanced neural network”, J. Mol. Biol., 214, 
pp.171–182, 1990.  

[6] Stolorz, P., Lapedes, A., and Xia, Y., “Predicting protein 
secondary structure using neural net and statistical 
methods”, J. Mol. Biol., 225, pp.363–377, 1992. 

[7] Rost B., and Sander, C., “Improved prediction of protein 
secondary structure by use of sequence profiles and neural 
networks”, Proc. Nat. Acad. Sci. USA, 90, pp.7558–7562, 
1993. 



 

 

International Journal of Fuzzy Logic and Intelligent Systems, vol. 10, no. 4, December 2010 

[8] Rost B., and Sander, C., “Prediction of protein secondary 
structure at better than 70% accuracy”, J. Mol. Biol., 232, 
pp.584–599, 1993.  

[21] Sim, J., Kim, S.-Y., Lee, J., and Yoo, A., “Predicting the 
threedimensional structures of proteins: combined 
alignment approach”, J. Korean Phys. Soc. 44, pp.611-616, 
2004. [9] Jones, D.T., “Protein secondary structure prediction based 

on position-specific scoring matrices”, J. Mol. Biol., 292, 
pp.195–202, 1999. 

[22] Joo, K., Lee, J., Kim, S.-Y., Kim, I., and Lee, S.J., 
“Profile-based nearest neighbor method for pattern 
recognition”, J. Korean Phys. Soc. 44, pp.599-604, 2004. [10] Petersen, T.N., Lundegaard, C., Nielsen, M., Bohr, H., 

Bohr, J., Brunak, S., Gippert, G.P., and Lund, O., 
“Prediction of protein secondary structure at 80% 
accuracy”, Proteins, 41, pp.17–20, 2000.  

[23] Joo, K., Kim, I., Kim, S.-Y. Lee, J., and Lee, S.J., 
“Prediction of the secondary structures of proteins by 
using PREDICT, a nearest neighbor method on pattern 
space”, J. Korean Phys. Soc. 45, pp.1441-1449, 2004. [11] Zhang, X., Mesirov, J., and Waltz, D., “Hybrid system for 

protein secondary structure prediction”, J. Mol. Biol., 225, 
pp.1049–1063, 1992. 

[24] Qian, N., and Sejnowski, T.J., “Predicting the secondary 
structure of globular proteins using neural network 
models”, J. Mol. Biol., 202, pp.865–884, 1988. [12] Maclin, R., and Shavlik, J., “Using knowledge-based 

neural networks to improve algorithms: Refining the 
Chou–Fasman algorithm for protein folding”, Machine 
Learning, 11, pp.195–215, 1993.  

[25] Chou, P.Y., and Fasman, G.D., “Prediction of the 
secondary structure of proteins from their amino acid 
sequence”, Adv. Enzymol. Relat. Areas Mol. Biol., 47, 
pp.45–148, 1978. [13] Riis, S.K., and Krogh, A., “Improving prediction of protein 

secondary structure using structured neural networks and 
multiple sequence alignments”, J. Comput.Biol., 3, 
pp.163–183, 1996. 

[26] Protein Data Bank (PDB): http://www.rcsb.or 
 
 

[14] Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., 
Zhang, Z., Miller, W., and Lipman, L.J., “Gapped BLAST 
and PSI-BLAST: a new generation of protein database 
search programs”, Nucl. Acids Res., 25:3389–3402, 1997. 

Seong-Gon Kim received the B.S. degree in 
computer science from University of Illinois 
at Urbana-Champaign, Illinois, U.S.A in 
2008, and the M.S. degree in computer 
science and engineering from University of 
Florida, Florida, U.S.A. in 2010. He is 
currently a Researcher/Engineer in LG 

Electronics User Platform Lab. His current research interests 
include machine learning, pattern recognition, and intelligent 
robotics. 

[15] McGuffin, L.J., Bryson, K., and Jones, J.T., “The 
PSIPRED protein structure prediction server”, 
Bioinformatics, 16,  pp.404–405, 2000.  

[16] Sim, J., Kim, S.-Y., and Lee, J., “PPRODO: prediction of 
protein domain boundaries using neural network”, 
Proteins: Structure, Function, and Bioinformatics 59, pp. 
627-632, 2005. 

 [17] Kim, H., and Park, H., “Protein secondary structure 
prediction based on an improved support vector machines 
approach”, Protein Eng. 16, pp.553-560, 2003. 

 
Yong-Gi Kim received the B.S. degree in 
electrical engineering from Seoul National 
University, Seoul, Korea in 1978, the M.S. 
degree in computer science from University 
of Montana, U.S.A. in 1987, and the Ph.D. 
degrees in computer and information 
sciences from Florida State University, 

U.S.A. in 1991. He was a Visiting Scholar in the Department of 
Electrical and Computer Engineering, University of Illinois at 
Urbana-Champaign, Illinois, U.S.A., from 2008 to 2009. He is 
currently a Professor in the Department of Computer Science, 
Gyeongsang National University, Korea. His current research 
interests include soft computing, intelligent systems and 
autonomous underwater vehicle 

[18] Kim, H., and Park, H., “Prediction of protein relative 
solvent accessibility with support vector machines and 
long-range interaction 3D local descriptor”, Proteins: 
Structure, Function, and Bioinformatics 54, pp.557-562, 
2004. 

[19] Lee, J., Kim, S.-Y., Joo, K., Kim, I., and Lee, J., 
“Prediction of protein tertiary structure using PROFESY, a 
novel method based on fragment assembly and 
conformational space annealing”, Proteins: Structure, 
Function, and Bioinformatics 56,  pp.704-714, 2004. 

[20] Ginalski, K., et al., “ORFeus: detection of distant 
homology using sequence profiles and predicted secondary 
structure,” Nucleic Acids Res. 31, pp.3804-3807, 2003. 

 

318 
 
 


	Seong-gon Kim* and Yong-Gi Kim**
	*CISE department, University of Florida, USA
	**Dept of Computer Science, Gyeongsang National University, Korea
	Among the more popular machine learning methods used in this area are Artificial Neural Networks (ANN)[1,2] and Bayesian Inference methods. The ANN has the ability to take in large amounts of data and extract the relational information to approximate a model that closely fits the actual model that ties the data together, even through reasonable amount of missing data and noise. There has been a lot of work on predicting secondary structure using ANNs [3,4,5,6,7,8,9,10], sometimes in combination with other methods [11,12,13], and some of the of the more recent works include the PSI-BLAST[14] or PSIPRED[9,15] method that are still used today. PSIPRED is important in that it has so far been known to return the most accurate results in predicting secondary structures using protein profiles. Other methods that use protein profiles for structure prediction include PPRODO[16], SVMpsi[17,18], fragment assembly methods[19] and profile-profile alignment methods[20,21]. Using the same input vectors as PSIPRED, the nearest neighbor method is also used such as by PREDICT[22,23] to by step the training process as well.
	2.1 Multilayered Perceptron Neural Net Likelihood Model 
	We start by explaining the ANN architecture that will be used within the Bayesian framework. ANNs were originally developed to model the learning and processing mechanisms of the brain[1,2]. Although it is now known that the ANN does not accurately represent the workings of the brain, its ability to approximate non-linear functions in high dimensions proves ANN to be a valuable tool in searching for models to reasonably fit large amounts of data. The algorithm introduced in this paper uses one of the more simple types of networks – a standard 1 hidden layered fully connected Multilayered Perceptron (MLP) with sigmoid activation functions. 
	We first concern ourselves with the encoding of the sequence input and the interpretation of the output. Despite the initial intuition that encoding the sequence as input using physical and chemical features of potential relevance would outperform a more direct encoding scheme, due to the nature of the MLP, most of the information is discarded before reaching the output level. This algorithm uses a slight variation of the orthogonal encoding scheme where an amino acid would be encoded 20 nodes. Each of the nodes represents the 20 amino acids, while an input of all zeroes represents a terminal position within a window. Although this sparse encoding scheme has the disadvantage of being wasteful while increasing the number of network connections, it does not lose any data during the encoding process and is easier for the MLP to work with. A secondary structure was encoded with 3 nodes in a similar fashion, with each node representing an Alpha, Beta, or Turn structure. These encoding schemes were used to take a set number of neighboring amino acids within a certain window size as input along with each of their secondary structure, and the true secondary structure of the amino acid in question.  The output is the amino acid in question, also represented by the orthogonal encoding scheme. Although the outputs do not represent the conditional probability of a secondary structure given the neighboring amino acid information, they are a representation of this probability with respect to the inputs, so the outputs are later normalized to be used as the likelihood probability within the Bayesian framework. The final architecture of the ANN with a window size of 3 is shown in [Fig. 2].
	The next issue is deciding on the number of models and the different window sizes. It is known that large windows perform better in longer sequences since more information is used, while short windows perform better in shorter sequences of amino acids since much of the unneeded neighboring information is left out and the inputs become less noisy[10]. Previous work with similar architectures[24,4] have shown that a window size of 13 to 15 achieves the best performance. However, within the context of the Bayesian Inference process, we will also have to take into consideration the fact that the MLP is using prior probabilities as inputs as well. This means the algorithm will have to take in less neighboring prior information than the optimal window size while the Bayesian process is still converging. Assuming that 13 is the optimal size, we choose two smaller window sizes of 3 and 7, and so we have a total of three MLP models with window sizes W = {3, 7, 13}. 
	Finally, through experimentation, about 40 hidden nodes were shown to perform the best for all three MLP models. 
	In [Fig.2], An ANN with a window size of 3 is shown. The solid colored inputs or output are each a group of 20 nodes representing the neighboring amino acids. The double-outlined inputs are each a group of 3 nodes representing the neighboring secondary structures. The single input with a bold outline represents a group of 3 input nodes representing the secondary structure of the amino acid in question. Normalizing the outputs gives us the likelihood probability.
	2.2 Bayesian Inference Scheme 
	Now that the MLP models have been set, we turn to the overall Bayesian framework that the MLPs will run in. The Bayesian equation that is used is shown below.
	P(D|H) = P(H|D) * P(D)
	Posterior = likelihood * prior

	The reason the denominator is missing from the RHS of the Bayes equation is because its only function is to act as a normalization factor for the LHS of the equation. Within the Bayesian Inference process, each time a set of probabilities are found, they are normalized before the next iteration so the denominator is not required. 
	Each MLP model serves as the likelihood model while a 3 x n table of probabilities are kept to serve as the posterior and prior, where n = the length of the sequence and each row contains the probabilities of the amino acid being one of the 3 Alpha-helix, Beta-sheet or Turn structure. Starting with the first amino acid in the sequence, the algorithm runs through entire sequence one letter at a time, extracting the neighboring amino acid sequence information according to the set window size of the particular MLP as well as each of their prior probabilities from the probability table. This information is the used as input for the Feedforward algorithm and the output is normalized, multiplied to each respective prior, then set in a posterior probability table. Once the algorithm runs through the entire sequence, the posterior probability table is used as the prior probability table for the next iteration. This process is visually shown in [Fig. 3].
	In [Fig. 3], the arrow represents the amino acid the MLP is running on. Alpha, Beta, and Turn structures are represented as lowercase a, b, and t, respectively. P(S) is the probability of being secondary structure S and P(S|V) is the conditional probability of being secondary structure S given that the amino acid is V, where S = {a, b, t}.
	The algorithm alternates between MLP models of different window sizes for the iterations and this process continues until there is convergence. Experimentation shows that the order in which the MLPs of different window sizes are used was not important since the direction in which the probabilities converge stays the same in each case and so the Bayesian process effectively eliminates the ordering dependencies.
	One final issue with this Bayesian process is the sensitivity to the initial prior probabilities. It is shown that it is possible to get structure information from position specific scoring matrices for machine learning procceses[9]. Although these scoring matrices are not actual probabilities, like the outputs for the MLP, they contain information that represents the structural probabilities according to the position of each amino acid. The prior probability table used in this case was initialized to the normalized Chou-Fasman parameters[25]. 
	Finally, the amino acid is classified as the secondary structure with the highest probability from the posterior table.
	Seong-Gon Kim received the B.S. degree in computer science from University of Illinois at Urbana-Champaign, Illinois, U.S.A in 2008, and the M.S. degree in computer science and engineering from University of Florida, Florida, U.S.A. in 2010. He is currently a Researcher/Engineer in LG Electronics User Platform Lab. His current research interests include machine learning, pattern recognition, and intelligent robotics.
	Yong-Gi Kim received the B.S. degree in electrical engineering from Seoul National University, Seoul, Korea in 1978, the M.S. degree in computer science from University of Montana, U.S.A. in 1987, and the Ph.D. degrees in computer and information sciences from Florida State University, U.S.A. in 1991. He was a Visiting Scholar in the Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Illinois, U.S.A., from 2008 to 2009. He is currently a Professor in the Department of Computer Science, Gyeongsang National University, Korea. His current research interests include soft computing, intelligent systems and autonomous underwater vehicle









