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Abstract

This paper analyzes on the chaos characteristics of the chaotic neural networks and presents the convergence condition. Although the
transient chaos of neural network sould be beneficial to overcome the local minimum problem and speed up the learning, the permanent

chaotic response gives adverse effect on optimization problems and makes neural network unstable in general. This paper investigates the

dynamic characteristics of the chaotic neural networks with the chaotic dynamic neuron, and presents the convergence condition for

stabilizing the chaotic neural networks.
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1. Introduction

There have been many studies on biological neuron models
based on biological experiment results from mammalian brains
to primitive creature(squid giant axons)[1]. The major reason for
the studies is to simulate biological neural network for archiving
break-through on the performance of artificial neural networks,
According to many extensive researches of neurology, some
researchers found that biological neurons have limit cycle and
chaotic activities for permanent nature or transient period[2].
Artificial neural networks were modeled from biological neuron
for mimicking the efficient behavior of human neural networks.

The chaotic responses of biological neurons have been
modeled quantitatively by many researchers. Chaotic neural
networks consist of bunch of chaotic neurons with connection

weights. The primitive model was the Hodgkin-Huxley equation.

Caianiello[2,3] and Nagumo-Sato[4] modified this primitive
model for making chaotic neural networks. Aihara et al. made a
discrete time model with continuous output, and applied this
mode] to make chaotic neural networks[5]. They gave some
possibilities of application in solving optimization problems,
which were traveling salesman problem(TSP). The effects of
chaotic response have not verified yet in analytical methods.
The chaotic characteristics of neuron generally give adverse
effect on optimization problems, but the transient chaos of
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neuron model could be beneficial to overcome the local
minimum problem and speed up the learning process. Aihara
proposed that the transient chaotic characteristics of neuron
could be helpful for global optimization.}6,3)

Even though some modifications were made, the drawback of
those previously proposed chaotic neural networks are still
complicate to apply in artificial neural network, and need more
itself and
algorithm.[7] In previous paper, we presented a novel modified

dynamic characteristic in neuron learning
chaotic neural network for simplifying structure and enforcing
dynamic characteristics, and applied this network to system
identification and neuro control.[9]

In this paper, the traditional chaotic neuron model is studied
for analyzing the dynamic characteristics. The modified chaotic
dynamic neuron is presented for making the chaotic dynamic
neural networks. The dynamic characteristics of proposed
networks are investigated to constrain the chaotic characteristics,
and the convergence conditions are presented. This convergence
condition of chaotic neurons applied to chaotic neural networks

for stabilizing the chaotic neural networks.

2. Chaotic Neuron Models

2.1 Traditional Chaotic Neuron Model

The traditional model of the chaotic neuron was suggested by
Caianiello.[1] In the inside neuron, the past excitation inputs
gives the inhibitory influence for refractory periods. This
inhibitory influence of past firing decreases exponentially with



A study on the Convergence Condition of Chaotic Dynamic Neural Networks

time. Under this assumption, the behavior of neuron was
modeled as a nonlinear differential equation as equation (1).

x(k+1) =u(A(k)—a2K’x(k—r)—e) )

r=0

where x(k +1) is the output of a neuron at discrete time & +1,
and x(k) takes either 0 or 1. z(-) is a unit step function, A(k)

is the strength of the activation input at discrete time &, K is the
damping factor of the refractoriness having values between 0 and 1.
The constant ¢ is a positive parameter, and @ is the threshold of a
chaotic neuron. If the inertial state of a neuron i at time k is
assumed as follows[3],

y(k+1):A(k)—a~Zer(k—r)—6 @)

r=0
then eq. (1) can be expressed as egs. (3) and (5).
vk +1)y=K"y(k)—a-uly(k)] +a(k) 3

where a(?), a bifurcation parameter, is defined as

a(k)y=Ak)—-K " Ak-1)-(1-K")-0 @
xtk+D)=uly(k+1D)]. )

The conventional chaotic neuron model, suggested by
Nagumo and Sato[4], has two different type of input
simultaneously; input from same layer and extraneous input, and
also has a refractory term, which is a self-feedback. The
refractory term performs effective dynamic characteristics
through repeated signal controlling as one of three terms, which
affect output of the chaotic neuron. The neuron model is shown
in Fig. 1.
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Fig. 1 Chaotic neuron unit

Generally, the dynamics of the ith chaotic neuron in networks
at discrete time k+1 is

n k
x,(k+ 1) = fu[ D> wh Y KT (k=)
j=1 r=0

m k
+ZIW;ZOK;hj(xi(k—I’))
J= r=

k
~a-Y Kl g (x,(k=r)-6,] ©),
r=0

. . . F R
where fy () 1is a sigmoid function, w; and wj

coupling coefficients(weights) from the jth external neuron

arc

and the j th feedback neuron to the 7 th neuron, respectively.
I;(k—r) is the strength of the J th externally applied input
at time k-7, h;(x;(k—r)) is a transfer function of the

axon connected on the j th chaotic neuron, and g, (x;(k —7))

is a refractory function of the i th chaotic neuron at time k—r,
usually an identity function. The #and m are the numbers of
external and feedback inputs applied to the chaotic neuron. The

decay parameters, K., K, ,and K are the damping factors

of the external, feedback, and refractoriness, respectively. In this
paper, we assumed the same values of decay parameters, K .
The ; is the threshold of the i th chaotic neuron.

Aihara deals with the 7th chaotic neuron equation in a

reduced form by dividing feedback, external, and refractory
terms.[5] Each term is expressed as

S+ =K- &)+ D wy T, (k) @

j=1
nk+D=K 0,0+ Y wih (fG,(0)  ®)
j=1
(kA D) =K &0 - ag, (£, ()~ 6,1 K) ()

If the inertial state of a chaotic neuron at time k+1 is
expressed as follows,
yitk+)=&(k+D)+m(k+D)+g(k+1)  (10).

the equation (10) can be written as follows;
yi(k+1)= K- (& (k) +m;(k)+ (k)
D Wi L0+ Y with; ([ (v (0) (1),
j=l j=1
—og;(fy(y; (k) - 0,(1- K)
Since y;(¢) is defined as y; () =&, () +n;()+ ¢, (7) , the

equation (11) can be expressed as

yitk A D=K -y, )+ w0+ D wiihy (fy i) o
j=1 j=l :

—og,(fy (v;(F))-60,(1-K)

In order to apply the continuous Hopfield neural network
structure to the recurrent inputs, Aihara et al. define the

symmetric structure of recurrent weights as
wif = wﬁ-, wr =0 This neural network uses two kinds of
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learning rules in same network. Since the structure decreases the
efficiency of learning and the dynamic characteristics of
network, this model is not appropriate for modeling dynamic
systems.

2.2 Chaotic Dynamic Neuron Model

The chaotic neuron model still has complicate dynamics for
applying on neural networks. More simplification is needed in
this model for reducing the computation time. This paper
presents a chaotic dynamic neuron unit with same chaotic
characteristics. Since the ag,;(fy(y;(k))) term in equation

(12) is overlapped in the case of i=j in the term of

imfhj (fv (. (k) , the ag;(fxy(y;(k)))is abbreviated in this

modified model. For more simplification, the threshold term,
0;(1-K), is defined zero, and the nonlinear function, 4, (-) , is

defined 1. Fig. 2 shows modified chaotic neuron unit.
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Fig. 2 Chaotic dynamic neuron unit

Then the reduced form of eq. (6) is

yi(k+1) =K-y,.(k)+zn:w§ ~Ij(k)+iw§ x, (k)

(13)

j=1 J=l
xi(k+ D)= fylyi(k+1)] (14)
(15)

1
fN[yi(k+1)]=—m/_
1+e £

where & is slope of sigmoid function.
To increase dynamic characteristics, the nonsymmetric
weights are applied in

R R
Wy # Wi,

recurrent inputs such as

wl-lf #0 . Each neuron sums three inputs; the

n

refractoriness, K - y; (k) , the activation, Z wl 1. (k) and the

gyt
j=1
. m .
recurrent input, z w ;? x, (k) - The summation passes through
=1
the nonlinear sigmoid function. This model is similar to the

transiently chaotic neural network(TCNN) except for the
recurrent input term{6], and has similar characteristics.
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2.3 Analyzing the Chaotic Characteristics of Chaotic Neuron
The single neuron model in fig. 3 is traditional chaotic neuron
model suggested by Nagumo-sato and Aihara.
The simplified single chaotic neuron model is described as eq
16 and 17.

y(k+1)=K- y(k)—x(k)+ A(k) (16)

1
k)= bkt D= A7)
l1+e ¢

where y(k+1) is internal state of chaotic neuron at discrete time
k+1, x(k+1) is output of chaotic neuron at discrete time & +1,
K is refractory parameter, A(k) is activation of chaotic neuron at
discrete time & , and & is slope of sigmoid fimction. As shown in eq.

16, the internal state of chaotic neuron is determined by summarizing
three inputs, refractory, recurrent and activational inputs.

Output
X(k+1)

Chaotic Neuron
Unit

Sy 1))

Alk)
Actvation

Fig. 3 Single chaotic neuron unit

The output of neuron is determined by a nonlinear sigmoid
function in eq. 17. The output of neuron has different output
characteristics by changing activation values as shown fig. 4.
The fig. 4 is poincare map for identifying chaotic characteristics.

The slope is fixed with & = 0.06 , the refractory value is also
fixed with K =0.7, and the activation value is varied with
three cases, 4=02, A=05,4=07, and A= 09. I
cases on 4A=0.2, and A=0.7, the graphs show chaotic
outputs, In 4=0.5, and A4=0.9, the outputs have fixed
point. Figure 4. b shows a limit cycle, and figure 4.d shows a
typical orbit spirals into the fixed point as k — o . According
to activation values, the output of chaotic neuron shows chaotic
characteristics or fixed points.
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Figure 5 shows bifurcation diagram for logistic map based on
modified chaotic neurons. In this case, the slope is fixed with
£ =0.06, the refractory value is also fixed with K =0.7, and
the activation value is varied from 0 to 1. The output is split as
period doubling bifurcation, and the map becomes chaotic
intermittently.

Even though logistic map in figure 5 exhibits aperiodic orbits
for certain activation values, Lyapunov exponent is more
computationally useful for verifying chaotic characteristics. A
positive Lyapunov exponent is a signature of chaos. Figure 6
shows Lyapunov exponent diagram. The formula is defined as,

n—l1
),:Iim{lzm] f'(xi)l} 18)
H—® n i=0

where A is Lyapunov exponent, X; is state of orbit in i th
iterations, and f(-) is a smooth function. For limited p cycle,

Lyapunov exponent can be defined as
1& ,
A z;Zln‘ 1) (19).
i=0

In this MCNN application, Lyapunov exponent could be
defined as

p-l 2, LVl
AxiSmr-2C (20)
P =0 &

Figure 7 is three dimensional diagram of Lyapunov exponent
for variable slope and activation. The results show that chaotic

output is produced intermittently depending on the slope and
activation values.

Fig. 7 Lyapunov exponents with variable slope &
3. Convergence and Stability of Chaotic Dynamic
Neural Networks

3.1 Chaotic Dynamic Neural Networks
A chaotic dynamic neural networks in figure 8 has three kind

of inputs, weighted recurrent input wk.f w(y(k)), sum of
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weighted inputs ZWF -I(k), and refractory input K-y(k).
The Y w"-I(k) is the weighted sum of all outside inputs from
neurons including internal layer and between layers. The f (-) isa

sigmoid function, f,[y(k+1)}= and K, w' and

L
wR are refractory variable, weights for inputs, and weight for
recurrent input respectively. (k) , y(k), and x(k) are the
external inputs, the internal state, and the output of neuron respectively
attime k.
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Fig. 8 Chaotic dynamic neural networks
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The output is determined by a sigmoid function of weighted
sum. The mathematical forms can be expressed as equation (21)
and (22).

yk+D) =K -y()+ 2w’ - 1) +w™ - £, (y(k) @D

x(k+1)= fy[y(k+D] (22),

3.2 Convergence and Stable condition

Almost all neural network application such as pattern
recognition, identification or prediction, and control are
optimization problem. To solve optimization problems which
need to almost all neural network application, the neurons in
neural networks should have one stable fixed point. Chaotic
characteristics or limit cycle in the output of neuron should be
disappeared in permanent for solving optimization problems. So,
the chaotic characteristics of chaotic neuron should be transient.
Any arbitrary nonlinear continuous function(including chaotic
function) with one stable fixed point shows these two
convergence conditions.

1) If a fixed point y' (k) satisfies v (k+1)= f(y' (k) for any
arbitrary nonlinear continmous function f(), the y'(k) is

an stable equilibrium point; Jfor if
y(k)=y'(k) then yic+1)=f(ptke+1) - (V' (k) =y (k)
hence the orbit remains at y' (k) for all further iterations.
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2) If the derivative of any one dimensional system

ylk+1)=f(y(K) has a negative value at the fixed point

y (&) , the fixed point is stable.

From (21) and condition 1, the internal state, y(k) , at fixed

point can be represented as
Y k=K' )+ 2w k) +w - £V (k) @3).

Equation 23 can be represent as

_ oIk .
(I_RIQ.y*(k)_ZKR_(_): £.0° ) @9
w w

fa
Let a=(l—_RI—<l and b:M,then

w w
a-y'(k)-b=fy (' (k) (25).
Let FG (k) =a-y (k)-b and
G(y"(k)) = fx (" (k) , then (25) can represents as
F(y" (k) =G(y" (k) (26).

R be the recurrent weight for the internal

and S 1 be defined as

Theorem 1: Let w

state of CDNN  y(k)

S £+ = max M where f (y(k))is sigmoid function.
oy (k)

The convergence is guaranteed to only one fixed point y* (k) if

w? has the conditions as

1-K
S,

Q7).

—(1-K)-S,. <wk <

Proof- If a0, the always stable condition of fixed point with
only one fixed point can be defined using condition 2, as
follows;

6G(G (k)| L OF G (k))

(28).

max " > Y =
IEXCEEEA0

Equation (28) can be rewritten as
Sp<asw (29).
From (29) , the stability condition related to wk can be

made as
0<wt < 1=K (30)
S Iz

If a<0, the always stable condition of fixed point with only

one fixed point can be defined using condition 2, as follows;
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1
—ofg<—— 3y
S,
From (31) , the stability condition related to w® can be
made as
~(1-K)-S,. <w" <0 (32)

From (30) and (32), the stability condition in (27) is made as
follows.

1-K
5

—(1-K)-§,. <w" <
f*

3.3 Non-convergence condition

Incase 0<a<§ P the fixed points can be classified as

three type: aytwo fixed points case, b) three fixed points case,
and c) one fixed point case.

1) Two fixed point case.
Two fixed points case can be happened when the slopes of
two functions, F( y* (k)), G( y* (k)) , have same value.

oGy (k) _ OF(y" (k)

- - (33)
oy (k) oy (k)

(23) is represents as

a=x"(k)-(1-x" (k))/S . (34)

where x (k ) is the output of chaotic dynamic neuron at fixed point,
and s is slope of sigmoid function.

From (34) x : (k) is defined as

1+, /1-4as .
X (k) =——L

(35)
2a
. 2a
y(k)=—s, In| —————-1 (36)
)= 1£,/1-4as .
b=a-y (k)y-x"(k)
1+,/1- .
=~as . Inl 2a -11- * 4as, (37

1i,/l—4asf* 2a

The fixed point at (35) is half-stable, and the other fixed point
is stable but it will locate in near 0 or 1.

2) Three fixed points case

1-./1-4as ..
“as, o — 241~ ~ b
’ 1-J1-4as . 2a (3%)
1+, /1-4as .
< —as . In| 2a -1i- !
1+J1—4asf* 2a

Two fixed points near 0 and 1 are stable, and one fixed point
between 0 and 1 is unstable.

3) One fixed point case

24 _17_1+,/1—4asf* )
1+1/1—4asf* 2a

b>—as . In|

This case has one stable fixed point but located in near 1

2a 4 _1—,/1—4asf*

b<—as,.In (40)
T i-das. | 2a
This case has one stable fixed point but located in near 0
1 :
In case ——— <a<0, the fixed points has one but
f*
unstable by condition 2.
From, the wX can be written as
—o<wt <—(1-K) S (41)
3.4 Chaos and limit cycle condition
1 * *
If a=———, the slopes of F(y (k))=a-y (k)-b

f*
and G( y* (k) = ful y* (k)) are perpendicular. The output of

chaotic dynamic neuron shows stable limit cycle.

1 #* *
If a~———, the slopes of F(y (k))=a-y (k)-b
f*
and G( y*(k)) = fn (y* (k)) are almost perpendicular. The

output of chaotic dynamic neuron shows chaos. The result of
chaotic response shows in fig 4. a and c.

4. Conclusion

In this paper, we present the stability and convergence
condition of the chaotic neural networks. Even though the
chaotic response may be helpful to overcome local minimum
problem, the initial chaos should be disappeared in time such as
the transiently chaotic neuron. Since the chaotic neural network
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has the highly dynamic characteristics and the high slope of
sigmoid function, the network shows fast learning and also
stability problem. To overcome this problem, the convergence
and stability condition are presented in this paper.
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