• Title/Summary/Keyword: fuzzy gain

Search Result 316, Processing Time 0.027 seconds

Development of Equipment Operating Condition Diagnosis Model Using the Fuzzy Inference (퍼지추론을 이용한 설비가동상태진단 모델 연구)

  • Jeong, Young-Deuk;Park, Ju-Sik
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.109-115
    • /
    • 2005
  • In the study, Methods for operating measures in equipment security to find out dangerousness timely in the system and to need for the prevention and measures. The method for analyzing and reconstructing the causes of accident of equipment in site, and try to save the information of site in real-time and to analyze the state of equipment to look for the factors of accidents. By this analysis, one plan for efficiency of production, Equipment Fault Diagnosis Management and security is integrating and building module of using the Fuzzy Inference based on fuzzy theory. The case study is applied to the industrial electric motors that are necessarily used to all manufacturing equipment. Using the sensor for temperature is attached to gain the site information in real time and to design the hardware module for signal processing. In software, realize the system supervising and automatically saving to management data base by the algorithm based in fuzzy theory from the existing manual input system

Vector Control of a Permanent Magnet Synchronous Motor for Elevators Using Fuzzy Controller (퍼지제어기를 이용한 엘리베이터용 영구자석형 동기 전동기 벡터제어)

  • Yu Jae-Sung;Hwang Sun-Mo;Won Chung-Yuen;Kim Sang-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.534-542
    • /
    • 2005
  • This paper proposes the fuzzy logic based vector control method for a Surface Mounted Permanent Magnet Synchronous Motor(SMPMSM) used in the elevators. The gain of a conventional PI speed controller in the elevator drive system can not be usually set high due to mechanical resonances, therefore its performance becomes deteriorated. There have been many methods to solve above problems such as an acceleration feedback in the speed controller. However, the above methods have defects that parameter information is demanded. In this paper', a Fuzzy controller(FC) is adopted in the elevator drive system. The performance of a fuzzy controller is compared with a PI controller in the no load and load conditions by simulation and experiments.

FUZZY Gain Tuning of PI Speed Controller Depending on Afterloads In Total Artificially Heart

  • Choi, Jong-Hoon;Choi, Won-Woo;Choi, Jae-Soon;Om, Kyong-Sik;Lee, Jung-Hoon;Min, Byoung-Goo
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.156-160
    • /
    • 1997
  • In this paper, the control scheme is proposed that PI controller parameter used for TAH speed control is adapted by fuzzy logic method using only the motor current waveform. By scheduling PI parameters, minimization of the vibration and the energy consumption and overcoming AoP loads becomes possible. In in vitro tests experimental results show our approach is a good scheme that is adapted to changing afterloads well.

  • PDF

Automated Drug Infusion System Based on Fuzzy PID Control during Acute Hypotension

  • Kashihara, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.186-189
    • /
    • 2005
  • In a clinical setting, developing a reliable method for the automated drug infusion system would improve a drug therapy under the unexpected and acute changes of hemodynamics. The conventional proportional-integral-derivative (PID) controller might not be able to achieve maximum performance because of the unexpected change of the intra- and inter-patient variability. The fuzzy PID control and the conventional PID control were tested under the unexpected response of mean arterial blood pressure (MAP) to a vasopressor agent during acute hypotension. Compared with the conventional PID control, the fuzzy PID control performed the robust MAP regulation regardless of the unexpected MAP response (average absolute value of the error between target value and actual MAP: 0.98 vs. 2.93 mmHg in twice response of the expected MAP and 2.59 vs. 9.75 mmHg in three-times response of the expected MAP). The result was due to the adaptive change of the proportional gain in PID parameters.

  • PDF

Control of a Inverted Pendulum Using Fuzzy-PID Controller (퍼지 PID 제어기를 이용한 도립진자 제어)

  • Shin, Ja-Ho;Hong, Dae-Seung;Ryu, Chang-Wan;Ko, Jae-Ho;Yim, Wha-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.859-861
    • /
    • 1999
  • This paper describes the development of a fuzzy gain scheduling scheme of PID controller for inverted pendulum system. Fuzzy rules and reasoning are utilized on-line to determine the controller parameters based on the error signal and its difference. Simulation results demonstrate that better control performance can be achieved in comparison with PID controller using pole placement to control of a Inverted pendulum.

  • PDF

Stability analysis of fuzzy logic controller using the concept of sector bound nonlinearity (제한된 부채꼴에서의 비선형 개념을 이용한 퍼지 논리제어기의 안정성 해석)

  • 김인익;박상배;이균경
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.573-578
    • /
    • 1991
  • A stability analysis technique has been proposed for linear SISO system associated with fuzzy logic controller. An analysis technique using the concept of well-known sector bound nonlinearity and its graphical interpretation, i.e., the circle criterion, is presented. Thus the use of classical Nyquist locus and the BODE diagram is brought into the picture. The aim of this present note is to represent a graphical approach based on sector bound nonlinearity and circle criterion for assessing the performance(degree of stability) of the linear SISO system associated with fuzzy logic controller. The degree of stability of the system is defined in terms of its gain and phase margins as defined in Section 3.

  • PDF

Iterative Tuning of PID Controller by Fuzzy Indirect Reasoning and a Modified Zigler-Nichols Method (퍼지 간접추론법과 수정형 지글러-니콜스법에 의한 비례-적분-미분 제어기의 점진적 동조)

  • Kim, S.D.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.74-83
    • /
    • 1996
  • An iterative tuning technique is derived for PID controllers which are widely used in industries. The tuning algorithm is based upon a fuzzy indirect reasoning method and an iterative technique. The PID gains for the first tuning action are determined by a method which is modified from the Ziegler-Nichols step response method. The first PID gains are determined to obtain a control performance so close to a design performance that the following tuning process can be made effectively. The design paramaters are given as time-domain variables which human is familiar with. The results of simulation studies show that the proposed tuning method can produce an effective tuning for arbitrary design performances.

  • PDF

A Study of Improved Auto Exposure System for Digital Still Camera Using Fuzzy Logic (소형화된 디지털카메라의 AE 시스템 개선에 관한 연구)

  • Cho, Sun-Ho;Lee, Sang-Yong;Tak, In-Jae;Park, Chong-Kug
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.798-803
    • /
    • 2007
  • In case of minimized digital camera and mobile digital camera, it's difficult to get the high quality image by conventional AE(Auto Exposure) algorithm because of restriction of system organization. In this paper, a new algorithm that adopts a target setting, a compensation of feedback delay and a gamma correction, etc, are suggested for improving a noise increase and an output sensitivity decrease due to system minimization. We also suggest a method using fuzzy logic which can decide more effectively the ES(Electric Shutter) value and the AGC(Analog Gain Control) value than conventional system.

A Study on the Development of Intelligent Cruise Control System (자동차 지능주행 제어시스템에 관한 연구)

  • Chung, Y.B.;Song, Y.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.176-187
    • /
    • 1995
  • The problem of designing intelligent cruise control system for a longitudinal motion of an automobile, which is powered by internal combustion engines coupled to an automatic multispeed transmission, is considered. The basic concept is a vehicle-following system which maintains desired spacing between vehicles. This system actuates throttle with the information of the spacing error so as to maintain proper spacing and improve passenger ride comfort. In designing the controller, a modified controller, i.e, PID gain scheduling and fuzzy controller with fuzzy compensator was developed in order to overcome the nonlinearities of the automobile and obtain better performance. The computer simulation results illustrate that the better vehicle responses were obtained with the modified fuzzy controller and, under this controller, the vehicle responses were found to be relatively insensitive to parameter variations.

  • PDF

Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.420-428
    • /
    • 2012
  • In this paper, a novel intelligent digital redesign (IDR) technique is proposed for the nonlinear interconnected systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique is to convert a pre-designed analog controller into an equivalent digital one. To develop this method, the discretized models of the analog and digital closed-loop system with the decentralized controller are presented, respectively. Using these discretized models, the digital decentralized control gain is obtained to minimize the norm between the state variables of the analog and digital closed-loop systems and stabilize the digital closed-loop system. Its sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.