• Title/Summary/Keyword: fuzzy classification method

Search Result 296, Processing Time 0.032 seconds

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

Collaborative filtering based Context Information for Real-time Recommendation Service in Ubiquitous Computing

  • Lee Se-ll;Lee Sang-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.110-115
    • /
    • 2006
  • In pure P2P environment, it is possible to provide service by using a little real-time information without using accumulated information. But in case of using only a little information that was locally collected, quality of recommendation service can be fallen-off. Therefore, it is necessary to study a method to improve qualify of recommendation service by using users' context information. But because a great volume of users' context information can be recognized in a moment, there can be a scalability problem and there are limitations in supporting differentiated services according to fields and items. In this paper, we solved the scalability problem by clustering context information per each service field and classifying it per each user, using SOM. In addition, we could recommend proper services for users by quantifying the context information of the users belonging to the similar classification to the service requester among classified data and then using collaborative filtering.

The Design of Digital ULTC Controller Using Minimum Distance Classification Method Under Network-based Distribution System (네트워크 기반 배전계통하에서 최소거리 판별 기법을 이용한 디지털 ULTC 제어기 설계에 대한 연구)

  • Ko, Yun-Seok;Kim, Ho-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.243-244
    • /
    • 2008
  • 기존의 고정 부하 중심점 방식의 ULTC 운전제어전략은 계절별 부하 변화에 따른 전압보상을 효율적으로 실현하기 어렵다. 따라서 가변 부하 중심점 방식의 ULTC 운전제어전략들이 제안되는데, ANN이나 Fuzzy 멤버쉽 함수를 설계하는 문제는 고도의 전문적 설계경험과 상당한 시간을 요구한다. 따라서 본 연구에서는 적용이 쉬운 최소거리 판별기법을 적용, 부하변화에 따라 ULTC의 운전 부하 중심점을 이동시켜, 전압보상 범위를 개선시킬 수 있는 디지털 ULTC 운전 제어전략을 제안한다.

  • PDF

Iris Segmentation and Recognition

  • Kim, Jae-Min;Cho, Seong-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.227-230
    • /
    • 2002
  • A new iris segmentation and recognition method is described. Combining a statistical classification and elastic boundary fitting, the iris is first segmented robustly and accurately. Once the iris is segmented, one-dimensional signals are computed in the iris and decomposed into multiple frequency bands. Each decomposed signal is approximated by a piecewise linear curve connecting a small set of node points. The node points represent features of each signal. The similarity measture between two iris images is the normalized cross-correlation coefficients between simplified signals.

Semiparametric Kernel Fisher Discriminant Approach for Regression Problems

  • Park, Joo-Young;Cho, Won-Hee;Kim, Young-Il
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.227-232
    • /
    • 2003
  • Recently, support vector learning attracts an enormous amount of interest in the areas of function approximation, pattern classification, and novelty detection. One of the main reasons for the success of the support vector machines(SVMs) seems to be the availability of global and sparse solutions. Among the approaches sharing the same reasons for success and exhibiting a similarly good performance, we have KFD(kernel Fisher discriminant) approach. In this paper, we consider the problem of function approximation utilizing both predetermined basis functions and the KFD approach for regression. After reviewing support vector regression, semi-parametric approach for including predetermined basis functions, and the KFD regression, this paper presents an extension of the conventional KFD approach for regression toward the direction that can utilize predetermined basis functions. The applicability of the presented method is illustrated via a regression example.

Fatty Liver Classification of Ultrasonography Images using SOM Method (SOM 기법을 이용한 초음파 영상에서의 지방간 분류)

  • Park, Ha-Sil;Han, Min-Su;Kim, Young-Hoon;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.419-422
    • /
    • 2014
  • 본 논문에서는 환자와 검사자에게 초음파 영상의 객관화된 정보를 정확하게 제공하기 위해 간과 신장의 초음파 영상에 SOM 기법을 적용하여 지방간 농도 수치를 분류하는 방법을 제시한다. 제안된 방법은 간, 신장 영역을 촬영한 초음파 영상에서 촬영정보나 눈금자 등과 같이 필요 없는 부분을 잡음으로 간주하여 제거한 Region Of Interest(ROI) 영상을 추출하고, 추출된 ROI 영상에서 명암대비를 강조하기 위해 Fuzzy Stretching 기법을 적용한다. Stretching된 영상에 Enhanced Average Binary와 Labeling 기법으로 적용하여 얻은 Contour 정보를 분석하여 잡음을 제거한 후, 지방간의 측정 영역을 추출한다. 추출된 간과 신장의 측정 영역에 SOM 기법을 적용하여 명암도 값을 분류한 후, 간과 신장의 실질 영역의 대표 명암도를 각각 추출하여 비교 분석한다. 제안된 방법을 초음파 영상에 적용한 결과, 효율적이고 객관적으로 간의 지방도를 분류할 수 있는 가능성을 확인하였다.

  • PDF

Fault Detection Relaying for Transmission line Protection using ANFIS (적응형 퍼지 시스템에 의한 송전선로보호의 고장검출 계전기법)

  • 전병준
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.5
    • /
    • pp.538-544
    • /
    • 1999
  • In this paper, we propose a new fault detection algorithm for transmission line protection using ANFIS(Adaptive Network Fuzzy Inference System). The developed system consists of two subsystems: fault type classification, and fault location estimation. We use rms value, zero sequence component and positive sequence of current, and then using learning method of neural network, premise and consequent parameters are tuned properly. To prove the performance of the proposcd system, generated data by EMTP(Electr0- Magnetic Transient Program) sin~ulationi s used. It is shown that the proposed relaying classifies fault types accurately and advances fault location estimation.

  • PDF

Distance Sensitive AdaBoost using Distance Weight Function

  • Lee, Won-Ju;Cheon, Min-Kyu;Hyun, Chang-Ho;Park, Mi-Gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.143-148
    • /
    • 2012
  • This paper proposes a new method to improve performance of AdaBoost by using a distance weight function to increase the accuracy of its machine learning processes. The proposed distance weight algorithm improves classification in areas where the original binary classifier is weak. This paper derives the new algorithm's optimal solution, and it demonstrates how classifier accuracy can be improved using the proposed Distance Sensitive AdaBoost in a simulation experiment of pedestrian detection.

Improvement of Self Organizing Maps using Gap Statistic and Probability Distribution

  • Jun, Sung-Hae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.116-120
    • /
    • 2008
  • Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine learning algorithms. One of the popular clustering algorithms based on machine learning is the self organizing map(SOM). SOM is a neural networks model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according to prior and posterior distributions, the weights of SOM have probability distributions for optima clustering. To verify improved performance of our work, we make experiments compared with other learning algorithms using simulation data sets.

A Cloud Classification Using Fuzzy Method (퍼지 기법을 이용한 구름 분류)

  • Cho, Hyun-Hak;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.355-359
    • /
    • 2009
  • 본 논문에서는 퍼지 기법을 이용하여 구름의 종류를 분석하는 방법을 제안한다. 본 논문에서는 가시 영상과 적외 영상을 대상으로 육지 영역은 RGB 컬러 정보 중에 G 채널 값의 수치가 높고, 바다영역에서는 B 채널 값의 수치가 높다는 정보를 이용한다. 이 정보를 이용하여 육지 영역에서는 R과 B 채널 값을 적용하고, 바다 영역에서는 R과 G 채널 값을 적용한다. 가시 영상과 적외 영상에서 임계치를 적용하여 잡음(구름 이외의 영역)을 제거하고, 잡음을 제거한 영상에서 육지 영역과 바다 영역을 구분한 후, 각 R, G, B 채널 정보를 퍼지 기법에 적용하여 구름 영역을 판별한다. 그리고 가시영상과 적외 영상에 모두 포함된 구름 영역에 대해서는 두 영상을 합성하여 구름을 판별한다. 제안된 기법을 구름 분류에 적용한 결과, 제안된 방법이 기존의 양자화를 적용한 방법보다 구름의 분류 성능이 개선된 것을 확인하였다.

  • PDF