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Abstract

Clustering is a method for unsupervised learning. General clustering tools have been depended on statistical methods and machine llearning
algorithms. One of the popular clustering algorithms based on machine learning is the seif organizing map(SOM). SOM is a neural networks
model for clustering. SOM and extended SOM have been used in diverse classification and clustering fields such as data mining. But, SOM

has had a problem determining optimal number of clusters. In this paper, we propose an improvement of SOM using gap statistic and
probability distribution. The gap statistic was introduced to estimate the number of clusters in a dataset. We use gap statistic for settling the
problem of SOM. Also, in our research, weights of feature nodes are updated by probability distribution. After complete updating according
to prior and posterior distributions, the weights of SOM have probability distributions for optimal clustering. To verify improved

performance of our work, we make experiments compared with other learning algorithms using simulation data sets.
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1. Introduction

Diverse clustering algorithms have been used in machine
learning applications. Also, many researchers have studied on
the clustering approaches. Self organizing map(SOM) is a tool
of neural networks for unsupervised learning[1]. The SOM
proposed by Kohonen has been used in various clustering fields
such as text mining, customer relationship management(CRM),
bioinformatics and so forth[2],[3]. In original SOM, the weights
of feature nodes are updated by a learning process depending on
training data set. After complete updating process, the final
weights of SOM are determined by fixed weight values. So, we
get only clustering result. If the result is not optimal, we are not
able to get another clustering. To overcome this problem of
SOM, some researches were proposed in machine learning
fields[41,[5],[6],[71,[8],[9]. These were alternative probabilistic
models similar to SOM to settle the problem of SOM. But, they
had some limitation because the alternative models were not
SOM. On the other hand, some works have been applied to
probabilistic  methods with  general SOM
directly[10],[11],[12]. They were probability models based on
original SOM. Therefore, the models were improved appfoaches

combine

for solving the problems of SOM. In this paper, we propose
improvement of SOM using gap statistic and probability
distribution. Our improved SOM is able to provide diverse
outcomes from the posterior distribution of SOM weights by a
given training data set. What is more, our model is able to
determine the number of clusters by automatic learning based on
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gap statistic. In our experimental results, we verify the
performances of our model to compare other clustering methods
using the data sets from simulation data sets.

2. Related Works

2.1 SOM |

In general, the cluster is a set of adjacent points in given
training data. The points in the same group have close similarity
and objects in other groups have dissimilarity[13],[14]. We use
Euclidean distance as a measure of similarity between points.
The
determination of the number of clusters. For example, k-means

first problem considered in clustering is optimal
method needs initial number of clusters and hierarchical
clustering technique also requires optimal number of clusters for
stopping clustering process[13],[14]. The number of clusters has
been mostly determined by the arts of researchers with their
subjectively prior information. It is difficult to find objective

method to settle the clustering problem. So, we have studied on

the problem in SOM case[11],[12],[15]. Also, the following

algorithm 1s for typical SOM[1].

stepl) Choose random values for the initial weights

step2) Find the winner node with the smallest values of
Euclidean distance measure

step3) Update the weights of winner node (winner takes all)

step4) Repeat until given conditions are satisfied

When we complete the weights updating of SOM, we can
determine the number of clusters from the topological result of
feature map. But, what we get 1s only the result of the number of
clusters from SOM learning without knowing that the number of
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clusters is not optimal. So, in this paper, we propose improved

SOM using gap statistic and probability distribution to
overcome that problem.

2.2 Gap Statistic

Gap statistic was proposed to estimate the number of clusters
by R. Tibshirani et al[16]. The statistic has been used in the
clustering results of k-means or hierarchical clustering
algorithms. According to the previous simulation study, we
knew the good performance of gap statistic technique. Data of

gap statistic are shown in the following.

(xll’xIZ"'"xlm)’-“’(xnl’x.rﬂ""’xnm) (1)

Where, n and m represent the sizes of variables and

observations. Let G, Gy, ..., and Gk are K clusters from a given

data set. Gy denotes the indices of observations in cluster k, and
=Gy . in gap statistic, the following measure is defined.

d, = Z d,;. (2)

f.i'el,

Where,

dy = Z(xjr _‘xj‘r)z 3)

Also, r is the index of variable. So, 4 is the sum of the
patrwise distances for all observations in cluster k. therefore,
following Wy is defined.

d, 4)

When the value of Wg is the smallest, the K is optimal
number of clusters for given training data.

2.3 Prior and Posterior Distributions

Prior and posterior distributions are used in Bayesian statistics.

Also, Bayesian statistics is based on the following Bayes’
theorem[17].

PO S AR A L) ()
T G, | 9)2(0)

(3)
Where x;, ..., X, 1s ii.d.(independent and identical
distributed) random vector. Also, f(x|0) is a pdf(probability
density function). In Bayesian statistics, f(x|0) is called as a
likelihood function. In above expression, g(6) and p(6[xy, ..., x,)
are the prior distribution and posterior distribution respectively.
So, the updating process of Bayesian learning is performed by
the following equivalent statement[18],[19].

Prior distribution oc Likelihood functionxPrior distribution  (6)

Where prior distribution is the prior knowledge of given
training data. Also, likelihood function has information about
given training data. Using posterior distribution, we perform

optimal clustering which updates the weights of feature nodes in
SOM.

3. Improvement of SOM using Gap Statistic and
Probability Distribution

To cluster data points into optimal group, we propose an
improved SOM using gap statistic and probability distribution.
In this paper, we use Bayesian learning process for probability
distribution. That is, a probability distribution over all unknown
weights of SOM after Bayesian learning. Bayesian procedure
assigns a degree of plausibility to adaptive model. It also is
based on the following Bayes’ rule[17],[20].

P(Y | 6)P(6)

P@|7)= (7)
P(Y)

Where, Y is a vector of training data and © is a vector of
weights of feature map in SOM. The use of priors is strength of
Bayesian approach, since it allows incorporating prior
knowledge and constraints into the modeling process. Using the
rule with a chosen probability model means that the data, D
affect the posterior inference only through the P(Y|0), is called
the likelihood function. The rule can now be used to combine
the information in the data with the prior distribution. In this
paper, we focus our work into the posterior probability. To make
a decision about new data, often called predictive inference, we

perform the following expression.
p(O]Y)=cp(O)L(O]Y) (8)

In above, L(B]Y) and p(8) are likelithood and prior probability
density. The posterior density p(0|Y) describes what is known
about O given the data Y. Also, the constant c is able to be
computed by the following equation.

c=Jp(6)L(BY) 9)

In our work, Y represents input data for optimal clustering in
SOM. 6 1s weight vector of nodes of feature maps. So, p(0]Y) is
a probability of 0 given Y. That is, we assign Y into 0 with the
value of p(6]Y) is the largest. The following shows our proposed
clustering process.

S1) Given training data (input data)
S2) Determination of the dimension of feature map
S3) Initialization of the weights of nodes in feature map

w ~p(Bfx) ~ N(0,1)
S4) Normalization of the input data

X—H,
8

X

S5) Set likelihood function based on training data

L(8|x) ~ N(0,1)
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S56) Determining the winner node using Euclidean distance

The winner node has the smallest d(x,w).
S7) Weights update by Bayesian learning

pOIx)=cp(6)L(6[x)

S8) Update repeating of weights’ distributions until stopping
conditions which are given number of repeating and the
convergence criterion

S9) Determination of the number of clusters using the following
gap statistic rule

ptimal number of clustars

1

1

!

M
# of clusters

Fig. 1. Gap statistic and number of clusters
x-axis: the number of clusters
y-axis: Wy of gap statistic

We select the number of clusters by the W, value with a
significant fall in the W,.
S10) Assign all data points into their optimal groups

Using above steps, we are able to get improvement of SOM.
From S1 to S8, we perform our SOM which is combined with
probability distribution. Also, optimal determination of the
number of clusters is performed in S9. Finally the points are
assigned into their adaptive cluster in S10.

4. Experimental Results

To verify improved performance of our work, we make
expertments using data sets from synthetic data simulation. For
usage of the data sets, we generate multivariate random data
from finite mixture density(FMD)[21],[22]. FMD is a
probability density function as the following form[22].

fxm,0)=) 7.g,(x6) (10)
i=1
Where, x, 7, and 6 are random vector, mixing proportions,

and model parameters respectively. Also, density g is

118

parameterized by 8 In FMD, each cluster comes from a
population with a different probability distribution[21],[22]. So,
we get random data sets from the following expression.

ﬁz’gi(xi’éi)

2 11
f(xf;':’%ag) b

S (cluster i|x,) =

In this experiment, we need to generate multivariate random
vector x. Based on a d-dimensional vector of standard normal
random numbers, the following transformation is performed[22].

(12)

T
Xaxt) = RaxayZeanty T Baxy

Where, z is the standard normal random vector and x is a
mean vector. R'R=X is a covariance matrix. Using different
Y s, we get two synthesis data sets which are high and low
correlated data. In the following illustration, %, ,, 2,4 , and
2., are covariance matrices for high, middle, and low
correlated data between attributes. The data set with low
correlation are independent. The following figure shows the
correlation structures of our experimental simulation.
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(1 \
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0.38 035 041 1
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(1 A
0.03 i

X2 =004 0.12 1
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Fig. 2. Correlation coefficient matrix

020 015 1

COrr.

In the above covariance matrices, the number of attributes is
four respectively. We generate data sets which have 1000 data
points randomly from the multivariate normal distribution with
the above covariance matrices. First of all, we make an
experiment on optimal determination of the number of clusters
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with our process. Using the weight distributions of feature nodes,
we are able to generate random vector of the nodes of the
feature map. So, we perform from S1 to S8 by repeated random
sampling from the weight distributions. We show the results
which determine the number of clusters in the following figures.
The result of Iris plant database is shown in the below figure. In
this experiment, we use 50 repeated random samplings.
Following 3 figures express the improved results of our
improved SOM which are the experimental results from the
synthetic data sets with high, middle, and low correlation
coefficients between input variables.

12

High Correlation
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Fig. 3. Clustering result of high correlation

We find the number of clusters of high correlation synthetic
data 1s 5 from the above result. In the figure, the line of # of the
clusters represents each result of a random sample from the
weight distributions. Our result is shown by the bold line of
average # of clusters. In this line, the value of each step from 1
to 50 1s computed by averaging previous values. By the result,
optimal number of clusters of the data set is determined as 5.
This 1s equal to the number of classes of our synthetic data.
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Fig. 4. Clustering result of middle correlation

Similar to the result of the data with high correlation, the
heuristic result in synthetic data with middle correlation shows
about 5 as optimal number of clusters. In next figure, the result

of synthetic data with low correlation is analogous to the
heuristics with high and middle correlation coefficients.
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Fig. 5. Clustering result of low correlation

From the above 3 figures of synthetic data sets, we know the
variance of the cluster numbers is larger according to increasing
correlation coefficient. So, the variance of the cluster numbers in
the data with low correlation is the smallest in the synthetic data
sets. Next, to verify the improved performance of our research,
we compare our study with competitive learning
algorithms[2],[3],[23],[24]. The following result is gotten by
misclassification rate.

Table 1. Evaluation result of compared algorithms

Synthesis
Methods :
High Middle Low
SOM 0.21 0.20 0.19
SVC 0.15 0.18 0.18
K-means 0.29 0.30 0.28
. . Agg. 0.34 0.38 0.29
Hierarchical
Div. 0.41 0.41 0.38
Improved SOM 0.18 0.19 0.16

The result table shows the performance values of our
improved SOM are better than others. But, in the experimental
result of synthetic data with high correlation coefficient, the
evaluative value of SVC 1s smaller than our SOM. Also, we get
the result that the number of clusters of above 3 data sets is 3
using gap statistics according to S9 and S10 in section 3.

5. Conclusions

In this paper, we proposed improvement of SOM using gap
statistics and probability distribution for optimal clustering. Our
research was a trial to settle the problems of general SOM and
alternative SOMs. We verified improved performances of our
improved SOM compared with other learning algorithms using
synthetic data sets with high, middle and low correlations.
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