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Abstract

Recently, support vector learning attracts an enormous amount of interest in the areas of function approximation, pattern
classification, and novelty detection. One of the main reasons for the success of the support vector machines(SVMs) seems to be
the availability of global and sparse solutions. Among the approaches sharing the same reasons for success and exhibiting a
similarly good performance, we have KFD(kernel Fisher discriminant) approach. In this paper, we consider the problem of
function approximation utilizing both predetermined basis functions and the KFD approach for regression. After reviewing support
vector regression, semi-parametric approach for including predetermined basis functions, and the KFD regression, this paper
presents an extension of the conventional KFD approach for regression toward the direction that can utilize predetermined basis
functions. The applicability of the presented method is illustrated via a regression example.
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1. Introduction

Recently, the theory and practice about the SVMs(support
vector machines) have been well studied[1-2], and as a result,
support vector learning has become one of the most important
tools in the area of intelligent systems. In general, support
vector machines have been derived utilizing the concepts such
as the maximal margin[3], regularization-based function
approximation on the RKHS(reproducing kernel Hilbert
space)[4], or the Bayesian approach[5]. Due to their inherent
advantages such as good generalization capabilities, SVMs
now enjoy strong popularity in the fields of pattern
recognition[6], function approximation[7], and novelty
detection[8-10].

Support can be used to train
MLPs(multi-layer perceptrons) with single layer of hidden
nodes and RBFNs(radial basis function networks). These
networks, when trained by the support vector learning, have
the following features:

(1) Unlike conventional training algorithms such as the error
back-propagation method, the number of hidden nodes of the
networks can be determined automatically in the process of
learning.

(2) They do not suffer from the problem of convergence to
local minimum, thus can yield globally optimal solutions for
the given training data.

In particular, the problem that each different initial condition
ultimately converges to a different solution is not an issue in
the area of support vector learning.

(3) The solutions obtained via support vector leaming can
have a certain level of generalization capabilities which can be
explained with the help of statistical learning theory.

In addition to the above, another of the main reasons for
the success of the support vector machines seems to be the
availability of a sparse solution. Among the approaches
sharing  the same reasons for success and exhibiting a

vector  learning
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similarly good performance as SVMs, we have KFD(kernel
Fisher discriminant) approach[11-14]. In this paper, we
consider the problem of function approximation utilizing both
predetermined basis functions and the KFD approach for
regression.  After support regression,
semi-parametric approach[15] for including predetermined basis
functions, and the KFD regression, this paper presents an
extension of the conventional KFD approach for regression
toward the direction that can utilize predetermined basis
functions. Moreover, the applicability of the presented method
is illustrated via a regression example.

The remaining part of this paper is organized as follows: In
Section I, we review the problems of support vector
regression and kernel Fisher discriminant regression. In
Section 1II, we present our main result on the KFD regression
with predetermined basis functions included. Section IV
considers an example to show the applicability of the
presented method. Finally, in Section V, concluding remarks
are given together with possible topics for future works.

reviewing vector

I1I. Preliminaries

2.1. Epsilon support vector regression

The problem of function approximation utilizing support
vector learning is often called SVR(support
regression)[7]. In the following, we briefly review the
so-called epsilon SVR method.

vector

Given the set of training data {(x;,v,)} i, the objective
of the epsilon SVR is to find a smooth approximator

() = <w, f>+b

which minimizes the total sum of epsilon-insensitive errors{7]

v, —Ax )2 max{ly;—Ax)l—e,0}.
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Note that ¢(x) is the feature vector in the feature space
F, which is in general of much higher dimensional than the
input space for x. The objective of the epsilon SVR can be
achieved by solving the following optimization problem[2]:

min & [[uil*+C 26+ £ ) M

s.t. y,—((w,¢(x,)>+b) < E‘f‘fi
Kw. Hx )>+b)—y; < et €]
&, €120, V7

Here, C is a positive trade-off constant which determines
relative importance of the error values £;, £ compared to

lwli?/2 which may indicate the smoothness of
approximating function f£.
The Lagrange function associated with the above
optimization problem is as follows:
L= LllullP+C B &+ &)

- gla,-(eJr Ei—yit<w, fx)>+b)

— e ie+ & +yi—Cw, Hx - b)

- 21(77;'5;"" 77D
(Here, we have constraints o (¥, 7 > ()
Note that w,b, &;, & are primal variables, while the

a;, a7, 7;, 7; are dual variables which are introduced as

Lagrange multipliers. Since the optimal solution of problem
(2) is the saddle point in the augmented space consisting of
coordinates for both primal and dual variables[1], the
following should hold at the optimum..

%:0@,”_ 2]a,¢(x,~)+ gla?fl’(xi)=0 3)

w= 2 ai—aDix)
L0 Semapm
%= 0 = a”+2”=C

a{”e0,C, Vi
(Here, by the notation (*), we mean that the cases with and
without * both hold.)
By plugging the results of (3) into the Lagrange function L,
we obtain the following dual problem:

max Dz_% gl Z}l("f_“?)(af—a?)<¢(xf),¢(x,~)> @
+ gl(ai'—a:‘)yi"‘ ,21(“"+ ade

s.t. gl(a,-—a D=0
a P<l0,C, Vi

Here, if the feature map ¢ : R” — F is chosen to be the one
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corresponding to the widely used gaussian radial basis
function kernel, then the following kernel trick[2] holds:

C(x), W(3)> = kx, ) = exp(—lx— v %/26?)

Also, it follows that the dual problem (4) is equivalent to
the following:

max D= —% 21 ]Zl(ai—a;)(a;—a;)k(xi,xj) (5)

i

+ gl(ai'.a:)yi_ gl(ai—i- af,‘-)e
s.L. 2. (ai—a D=0
a Pel0,C, Vi

Note that problem (5) is in the form of QP(quadratic
programming). By solving (5), the optimal ¢, and o } can
be obtained.. Moreover, the optimal value of bias term 5 is
obtained by utilizing the Kuhn-Tucker condition[1]. Then,
based on the equation

w =

2 (= a Dilx),

=

the approximating function f can be represented as follows:

AR = Cw, W)+ b= B(a—adkx,+b ()

2.2. Kernel Fisher discriminant approach

For the clarity and convenience of description, we first
consider the binary classification problem[11]. Let
{x;|i=1,-+, m} be training data set, and ye {—1,1}"
be the vector of corresponding labels. Also, define 1 = R™
1,,1, € R"
vectors corresponding to the class labels. Furthermore, let
I, I, and I, be index sets, respectively and we denote the
cardinality of each I, as [, Li=1L1). As is
well-known, in the linear case, Fisher's
computed by maximizing

be the vector of all ones, as binary (0, 1)

(ie.,
discriminant is

Kw) = (w" Spw) | (w" Spw),

where Sz = (my — m,;) (my — ml)T’

Sw = gl l;} (x; — my) (x; — mk)T,

and m, is the sample mean for class £.
As was shown in [14], with an expansion for  in feature
space w = 21 a;¢(x;), the kernel version of the Fisher

discriminant problem can be reduced to minimize the

following:
- (') _ e"Mea
Ka) aTNa aTNaf s
where y; = % Kl;,i:1=1,2,

N=KK" - gliﬂiﬂ?, K= py T My,
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M= pp®, and K;= <Hx), §x)> = Mg, x),i=1,,
m, j=1,, m.

In [I11], shown that how the kernel Fisher
discriminant problem can be cast as the following convex
quadratic programming problem:

it was

min, e’ Na+ CHa) (7)
s.t. o’ (uy — ) =2,

where P is a and C is a
regularization constant. Furthermore, in Proposition 1 of [11],
it was shown that for given C> 0, any optimal solution «
to the optimization problem (7) is also optimal for the
following quadratic program and vice versa:

regularization operator,

min , 5 ¢ 181> + CP(a)
s.t. Ka+b=y+ &
1/e=0fori=1,2.

where o, £ R”, be R, C> 0.

One of the best parts of the above formulation is that it is
now straightforward to obtain the kernel Fisher discriminant
approach for regression. As was described in [11], instead of
+1 outputs y, we now have real-valued y's. Also, instead
of two classes, there is only one class left. This recipe yields
the following formulation for the KFD regression: Given the

training data {(x;,y,) € R"xR|i=1, -, m}, the function

Ax) = Zai Kx;, x) + b which is an optimal approxi-

mator in the sense of kernel Fisher discriminant can be found
by solving the following quadratic programming problem:

min , , ¢ 1| £II° + CP(a) (8)
st. Ka+1b=y+ &,
1"¢=0,
where o, € R” , bR, C>0, K; = kx;,x), i=1,
Here, C is a regularization constant that will be chosen by
the user, and P(a) is the operator for regularization.

Throughout this paper, we consider the [, norm for the

regularization operator, i.e.,

Pla) = llelly = la1l + - + .l
Note that the /; norm is one of the most popular choices for
the regularization operator in the related studies. Also note
that this regularization operator plays a central role in yielding
a sparse solution. Based on the obvious connection between
(8) and support vector regression, we will mean, by the
whose coefficient ¢«; is

support vectors, the vectors x;

non-zero in the final solution Ax) = 2 a; kx;, x)+b.

III. KFD regression with predetermined basis
functions included

The main objective of this paper is to find an approximator
consisting of two parts: the first part is the usual neural
approximator such as RBFN or MLP with a single hidden
layer, while the second part is a linear combination of
independent basis functions {¢(-),..., ¢,( )} which are
provided based on the domain knowledge. If we use the
support vector learning, the structure of the above kind of
approximators can be represented in the following form[15]:

AR = <, $>+ 281 42) (©)
For fitting the given data
{(x;,y)Ee R xRIli=1, -, m}

with functions in the form of (9), the authors of [15] studied
about a semi-parametric approach that generalizes the method
of the epsilon SVR method. Since the KFD regression and the
epsilon support vector regression share many similarities, we
take the strategy of first reviewing the semi-parametric
approach of [15] and then following similar steps to establish
a semi-parametric approach for KFD regression. The
mathematical formulation of [15] for approximating the
training data with function (9) is as follows:

min Sllul’+C 36+ €D (10)

st Kw, x>+ Zlﬂj¢j(xi)_yise+5;

i Cw, §x)>— T Bix)<et &
£, 6720, Vi

Based on the above objective function and constraints, the
corresponding Lagrange function has the following form:

L= L+ c B e+en

+ 2 ey dx)>— 3 pix0 e &)

+ 2}(1/ ?{( w, $lx >+ gl'gigbf(xi)‘y,'— e— & ?}

+ gm(*&H gln?(w ED =0

(Here, (", 7 20)

(n

By utilizing the saddle point condition, one can eliminate the
primal variables, which yields the following dual problem:

max — 1 3 (@ a)(a,~ )k x, x)

—& ;l(aﬁ a;)+ Ii] yile;i—al)

(12)

st 2(a—a s, =0, Vi
ai,a; €1[0,C, vi

The solution @; and o of (12), together with the 3,
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which are obtained by applying the Kuhn-Tucker condition to
support vectors, provides the coefficients of the following
approximator:
)= Bla—a Dkxn+ BB 0 (13
Now based on the above review, we choose (13) as the
mathematical form of an approximator for the semi-parametric
KFD regression. Note that in this equation, each entry of
e; and o should be non-negative. Then, the remaining
problem is how to find the coefficients «;, a;, and B, in
the context of the semi-parametric KFD approach. Considering
the optimization problem (8) for the KFD regression together
with the formulation (10) for the semi-parametric support
vector regression, we can come up with the following

mathematical formulation for the semi-parametric KFD
regression:
min , - 5¢ IEIZ+ Clla—a'lly (14)
st. K(e—a" )+ 08 =y+ &,
17¢=0,
where @,a", € R", e R",C>0,
Ki=Mx;,x2),i=1,",m, j 1, ,m,
$1(x1) 0 Balxy)
o= : : i e R™",
$1(xm = B,(x,)
and ¢ 20 for Vie {1, -, m}.
Here note that minimizing the /; norm of a— o' under the
constraints oY >0 for Vie (1, -, m} leads to the
condition

(15)

a;a; =0 forVie {1,-, m}.

Here, we note that under the condition (15), we can conclude
that the problem (14) is equivalent to the following quadratic
programming problem:

min , . 5¢ Z§+C(Za;+ Za?) (16)
s B E el -]
8
-I 0 00 :‘ 0
o 2100) ; <[0]

Finally, note that the KFD regression problem (8) with /;

regularizer is essentially a special case of the semi-parametric
KFD regression problems formulated above.

IV. A simulation example

To evaluate the applicability of the proposed method, we
considered an approximation problem for the data generated
from the following[15]:
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Ax)=sinx+sinc(2a(x—5))

In Fig. 1, we showed the above function together with each
component. For training data, we first considered samples
{(x;,y) | yi=Ax,)}, where the x; are the equally spaced
100 samples on the interval [-0,1]. As the set of the
independent basis functions, we chose {sinx,cosx,1}. This
means that at the outset of curve-fitting, we had not only the
training data but also the additional information that the
sinusoidal functions sinx, cosx, and/or the constant
functions could play an important role in describing the given
data. For the neural approximator part, we used the gaussian
radial basis functions with the width o= 0.25. The
simulation result for this noise-free case was shown in Fig. 2.
The trade-off constant C in (16) was chosen as 0.01 in this
case. As a different data set, we next considered samples
{(x;,v) | y,=ARx)+ &}, where £; is the gaussian noise
with zero mean and variance 0.2. With the same set of
parameters ¢ and C applied to the second set of data, we
obtained the simulation result shown in Fig. 3. Finally, we
observed how the trade-off constant C was related with the

sin{x)+sinc{2m (x-5))

sinc 2 (x-5))

Fig. 2. The curve-fitting result for the data generated
without noise
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Fig. 3. The curve-fitting result for the data generated with
noise

Table 1. A summary on the relation between the trade-off
constant C and the number of support vectors

Value of Number of support vectors
the trade-off constant Without With
C noise noise

0.001 26 (26.0%) 29 (29.0%)

0.01 19 (19.0%) 24 (24.0%)

0.1 11 (11.0%) 16 (16.0%)

1 3 (3.0%) 3 (3.0%)

number of support vectors for both set of training data, and
results were summarized in the table below Fig. 3. The
reported section seem to be
reasonably well, and lead us to expectation that the proposed
semi-parametric KFD method could be a good choice for a
certain class of regression problems.

simulation results in this

V. Concluding remarks

In this paper, we first reviewed the support vector regres-
sion, KFD approach for regression, and the semi-parametric
support vector regression, then proposed a quadratic
programming-based method for the semi-parametric KFD
regression. We expect that the proposed method could be a
promising approximation tool when hints on what kind of
independent basis functions are probable are given in addition
to the training data. The future works that need to be done to
improve completeness of the present work include the
comparative studies based on a wide range of simulation
examples and the refinement of the theoretical aspects of the
proposed method.
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