KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.4
/
pp.1330-1350
/
2022
As a preprocessing operation of transmitter antennas, the hybrid precoding is restricted by the limited computing resources of the transmitter. Therefore, this paper proposes a novel hybrid precoding that guarantees the communication efficiency with low complexity and a fast computational speed. First, the analog and digital precoding matrix is derived from the maximum eigenvectors of the channel matrix in the sub-connected architecture to maximize the communication rate. Second, the extended power iteration (EPI) is utilized to obtain the maximum eigenvalues and their eigenvectors of the channel matrix, which reduces the computational complexity caused by the singular value decomposition (SVD). Third, the Aitken acceleration method is utilized to further improve the convergence rate of the EPI algorithm. Finally, the hybrid precoding based on the EPI method and the Aitken acceleration algorithm is evaluated in millimeter-wave (mmWave) massive multiple-input and multiple-output (MIMO) systems. The experimental results show that the proposed method can reduce the computational complexity with the high performance in mmWave massive MIMO systems. The method has the wide application prospect in future wireless communication systems.
Malik, Annas W.;Abid, Adnan;Farooq, Shoaib;Abid, Irfan;Nawaz, Naeem A.;Ishaq, Kashif
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.7
/
pp.2425-2458
/
2022
The continuous evolution and proliferation of computer technology and our increasing dependence on computer technology have created a new class of threats: "cyber threats." These threats can be defined as activities that can undermine a society's ability to maintain internal or external order while using information technology. Cyber threats can be mainly divided into two categories, namely cyber-terrorism and cyber-warfare. A variety of malware programs are often used as a primary weapon in these cyber threats. A significant amount of research work has been published covering different aspects of cyber threats, their countermeasures, and the policy-making for cyber laws. This article aims to review the research conducted in various important aspects of cyber threats and provides synthesized information regarding the fundamentals of cyber threats; discusses the countermeasures for such threats; provides relevant details of high-profile cyber-attacks; discusses the developments in global policy-making for cyber laws, and lastly presents promising future directions in this area.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.3
/
pp.1063-1075
/
2022
In recent years, container techniques have been broadly applied to cloud computing systems to maximize their efficiency, flexibility, and economic feasibility. Concurrently, studies have also been conducted to ensure the security of cloud computing. Among these studies, moving-target defense techniques using the high agility and flexibility of cloud-computing systems are gaining attention. Moving-target defense (MTD) is a technique that prevents various security threats in advance by proactively changing the main attributes of the protected target to confuse the attacker. However, an analysis of existing MTD techniques revealed that, although they are capable of deceiving attackers, MTD techniques have practical limitations when applied to an actual cloud-computing system. These limitations include resource wastage, management complexity caused by additional function implementation and system introduction, and a potential increase in attack complexity. Accordingly, this paper proposes a software-defined MTD system that can flexibly apply and manage existing and future MTD techniques. The proposed software-defined MTD system is designed to correctly define a valid mutation range and cycle for each moving-target technique and monitor system-resource status in a software-defined manner. Consequently, the proposed method can flexibly reflect the requirements of each MTD technique without any additional hardware by using a software-defined approach. Moreover, the increased attack complexity can be resolved by applying multiple MTD techniques.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.10
/
pp.3390-3405
/
2022
Long Short-Term Memory (LSTM) combined with attention mechanism is extensively used to generate semantic sentences of images in image captioning models. However, features of salient regions and spatial information are not utilized sufficiently in most related works. Meanwhile, the LSTM also suffers from the problem of underutilized information in a single time step. In the paper, two innovative approaches are proposed to solve these problems. First, the Synergy-Gated Attention (SGA) method is proposed, which can process the spatial features and the salient region features of given images simultaneously. SGA establishes a gated mechanism through the global features to guide the interaction of information between these two features. Then, the Recurrent Fusion LSTM (RF-LSTM) mechanism is proposed, which can predict the next hidden vectors in one time step and improve linguistic coherence by fusing future information. Experimental results on the benchmark dataset of MSCOCO show that compared with the state-of-the-art methods, the proposed method can improve the performance of image captioning model, and achieve competitive performance on multiple evaluation indicators.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.10
/
pp.3230-3255
/
2022
Causality mining in NLP is a significant area of interest, which benefits in many daily life applications, including decision making, business risk management, question answering, future event prediction, scenario generation, and information retrieval. Mining those causalities was a challenging and open problem for the prior non-statistical and statistical techniques using web sources that required hand-crafted linguistics patterns for feature engineering, which were subject to domain knowledge and required much human effort. Those studies overlooked implicit, ambiguous, and heterogeneous causality and focused on explicit causality mining. In contrast to statistical and non-statistical approaches, we present Bidirectional Encoder Representations from Transformers (BERT) integrated with Multi-level Feature Networks (MFN) for causality recognition, called BERT+MFN for causality recognition in noisy and informal web datasets without human-designed features. In our model, MFN consists of a three-column knowledge-oriented network (TC-KN), bi-LSTM, and Relation Network (RN) that mine causality information at the segment level. BERT captures semantic features at the word level. We perform experiments on Alternative Lexicalization (AltLexes) datasets. The experimental outcomes show that our model outperforms baseline causality and text mining techniques.
The fourth industrial revolution, internet of things, and the expansion of online web services have increased an exponential growth and deployment in the number of cloud data centers (CDC). The cloud is emerging as new paradigm for delivering the Internet-based computing services. Due to the dynamic and non-linear workload and availability of the resources is a critical problem for efficient workload and resource management. In this paper, we propose the particle swarm optimization (PSO) based gated recurrent unit (GRU) neural network for efficient prediction the future value of the CPU and memory usage in the cloud data centers. We investigate the hyper-parameters of the GRU for better model to effectively predict the cloud resources. We use the Google Cluster traces to evaluate the aforementioned PSO-GRU prediction. The experimental shows the effectiveness of the proposed algorithm.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.58-63
/
2022
Recently, the improvement of computational processing ability due to the rapid development of computing technology has greatly advanced the field of artificial intelligence, and research to apply it in various domains is active. In particular, in the national defense field, attention is paid to intelligent recognition among machine learning techniques, and efforts are being made to develop object identification and monitoring systems using artificial intelligence. To this end, various image processing technologies and object identification algorithms are applied to create a model that can identify friendly and enemy weapon systems and personnel in real-time. In this paper, we conducted image processing and object identification focused on tanks among various weapon systems. We initially conducted processing the tanks' image using a convolutional neural network, a deep learning technique. The feature map was examined and the important characteristics of the tanks crucial for learning were derived. Then, using YOLOv5 Network, a CNN-based object detection network, a model trained by labeling the entire tank and a model trained by labeling only the turret of the tank were created and the results were compared. The model and labeling technique we proposed in this paper can more accurately identify the type of tank and contribute to the intelligent recognition system to be developed in the future.
International Journal of Internet, Broadcasting and Communication
/
v.14
no.4
/
pp.64-79
/
2022
The concept of Virtual Character has been developed for a long time with people's demand for cultural and entertainment products such as games, animations, and movies. In recent years, with the rapid development of concepts and industries such as social media, self-media, web3.0, artificial intelligence, virtual reality, and Metaverse, Virtual Character has also expanded new derivative concepts such as Virtual Idol, Virtual YouTuber, and Virtual Digital Human. With the development of technology, people's life is gradually moving towards digitalization and virtualization. At the same time, under the global environment of the new crown epidemic, human social activities are rapidly developing in the direction of network society and online society. From the perspective of digital media content, this paper studies the production technology of Virtual Character related products in the Chinese market, and analyzes the future development direction and possibility of the Virtual Character industry in combination with new media development directions and technical production methods. Consider and provide reference for the development of combined applications of digital media content industry, Virtual Character and Metaverse industry.
International Journal of Internet, Broadcasting and Communication
/
v.13
no.2
/
pp.82-92
/
2021
Purpose: It has been reported that the diversity and abundance of microbes in the vagina decrease due to the use of antimicrobial agents, and the high recurrence rate of female vaginitis due to this suggests that a new treatment is needed. Methods: In the experiment, we detected that 10% potassium sorbate solution, 1% eucalyptus oil solution, 1% tea tree oil solution, 400 µL/10 mL grapefruit seed extract solution, 100% lactic acid, 10% acetic acid solution, and 10% lactic acid solution were prepared and used. After adjusting the pH to 4, 5, and 6 with lactic acid and acetic acid in the mixed culture medium, each bacterium was inoculated into the medium and incubated for 72 h at 35℃. Incubate and 0 h each. 24 h. 48 h. The number of bacteria was measured after 72 h. Results: In the mixed culture test between lactic acid bacteria and pathogenic microorganisms, lactic acid bacteria showed good results at pH 5-5.5. Potassium sorbate, which has varying antibacterial activity based on the pH, killed pathogenic bacteria and allowed lactic acid bacteria to survive at pH 5.5. Conclusion: The formulation ratio obtained through this study could be used for the development of a feminine cleanser that can be used as a substitute for antibacterial agents. Further, the findings of this study may be able to solve the problem of antimicrobial resistance in the future.
Gan, Jipeng;Wu, Jun;Zhang, Jia;Chen, Zehao;Chen, Ze
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.11
/
pp.4224-4243
/
2021
Cognitive radio (CR) is a feasible intelligent technology and can be used as an effective solution to spectrum scarcity and underutilization. As the key function of CR, cooperative spectrum sensing (CSS) is able to effectively prevent the harmful interference with primary users (PUs) and identify the available spectrum resources by exploiting the spatial diversity of multiple secondary users (SUs). However, the open nature of the cognitive radio networks (CRNs) framework makes CSS face many security threats, such as, the malicious user (MU) launches Byzantine attack to undermine CRNs. For this aim, we make an in-depth analysis of the motive and purpose from the MU's perspective in the interweave CR system, aiming to provide the future guideline for defense strategies. First, we formulate a dynamic Byzantine attack model by analyzing Byzantine behaviors in the process of CSS. On the basis of this, we further make an investigation on the condition of making the fusion center (FC) blind when the fusion rule is unknown for the MU. Moreover, the throughput and interference to the primary network are taken into consideration to evaluate the impact of Byzantine attack on the interweave CR system, and then analyze the optimal strategy of Byzantine attack when the fusion rule is known. Finally, theoretical proofs and simulation results verify the correctness and effectiveness of analyses about the impact of Byzantine attack strategy on the throughput and interference.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.