
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, Mar. 2022 1063
Copyright ⓒ 2022 KSII

This work was supported by the Defense Acquisition Program Administration and Agency for Defense
Development under the contract UD210029TD.

http://doi.org/10.3837/tiis.2022.03.017 ISSN : 1976-7277

SD-MTD: Software-Defined Moving-Target
Defense for Cloud-System Obfuscation

Ki-Wan Kang1, Jung Taek Seo2, Sung Hoon Baek3, Chul Woo Kim4, and Ki-Woong Park1,*

1 Dept. of Information Security, and Convergence Engineering for Intelligent Drone, Sejong University,
Seoul 05006, Korea

[e-mail: woongbak@sejong.ac.kr]
2 Department of Computer Engineering, Gachon University

Gyeonggi-do 13120, Korea
[e-mail: seojt@gachon.ac.kr]

3Department of Computer System Engineering, Jungwon University
Chungcheongbuk-do 28024, Korea

[e-mail: shbaek@jwu.ac.kr]
4LG CNS,

Magok JoongAng St 8, Korea
[e-mail: enjoy0124@gmail.com]

*Corresponding author: Ki-Woong Park

Received February 4, 2022; revised March 3, 2022; accepted March 11, 2022;
published March 31, 2022

Abstract

In recent years, container techniques have been broadly applied to cloud computing systems
to maximize their efficiency, flexibility, and economic feasibility. Concurrently, studies have
also been conducted to ensure the security of cloud computing. Among these studies, moving-
target defense techniques using the high agility and flexibility of cloud-computing systems are
gaining attention. Moving-target defense (MTD) is a technique that prevents various security
threats in advance by proactively changing the main attributes of the protected target to
confuse the attacker. However, an analysis of existing MTD techniques revealed that, although
they are capable of deceiving attackers, MTD techniques have practical limitations when
applied to an actual cloud-computing system. These limitations include resource wastage,
management complexity caused by additional function implementation and system
introduction, and a potential increase in attack complexity. Accordingly, this paper proposes
a software-defined MTD system that can flexibly apply and manage existing and future MTD
techniques. The proposed software-defined MTD system is designed to correctly define a valid
mutation range and cycle for each moving-target technique and monitor system-resource status
in a software-defined manner. Consequently, the proposed method can flexibly reflect the
requirements of each MTD technique without any additional hardware by using a software-
defined approach. Moreover, the increased attack complexity can be resolved by applying
multiple MTD techniques.

Keywords: Cloud Computing System, Container Orchestration, Moving-Target Defense,
System Obfuscation.

1064 Kang et al.: SD-MTD: Software-Defined Moving-Target
Defense for Cloud-System Obfuscation

1. Introduction

Container techniques are applied to existing cloud computing systems to maximize their
efficiency, flexibility, and economic feasibility [1–3]. Concurrently, studies on ensuring the
security of cloud computing systems are gaining attention [4, 5]. Current cloud computing
systems generally maintain initially defined system attributes in a static manner [6, 7]. This
provides attackers with sufficient time and information to analyze the vulnerabilities of target
systems [8, 9]. To address these vulnerabilities, moving-target defense (MTD) techniques,
which increase the cost and complexity of attacks by periodically or aperiodically varying the
attack surface of the protected target, have emerged [10, 11]. Cloud computing systems, which
offer a high agility and flexibility, enable the implementation of various MTD techniques.
Specifically, network-based MTD techniques are effective as they make the attacker's initial
reconnaissance step difficult and reverse the information asymmetry between attackers and
defenders [12–15].

However, although each MTD technique is capable of deceiving attackers, they have
limitations when applied to actual cloud-computing systems. These include wasted resources,
management complexity caused by the additional function implementation and system
introduction, and an increase in attack complexity that may occur because of the application
of a single MTD technique. Accordingly, this study proposes a software-defined MTD system,
SD-MTD, that can flexibly apply and manage existing and future MTD techniques without
infringing on economic feasibility [16, 17]. Prior to the design and implementation of the
proposed SD-MTD system, this study derives its requirements. First, the implemented MTD
techniques should be centrally managed and applied. Second, it should be possible to verify a
valid range of mutations using the implemented MTD techniques. Third, it should be possible
to apply multiple MTD techniques to specific services to address a potential increase in the
attack complexity of a single MTD technique. Based on these derived requirements, an SD-
MTD system composed of an SD-MTD dashboard, an SD-MTD orchestrator, an SD-MTD
agent, and connector modules was designed and implemented.

Fig. 1. Overall system architecture and core components of SD-MTD system

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022 1065

Fig. 1 shows the overall architecture of the SD-MTD system that can flexibly apply and
manage existing and future MTD techniques. The proposed system is designed to correctly
define a valid mutation range and cycle for each moving-target technique in a software-defined
manner (by the SD-MTD orchestrator module in Fig. 1) and monitor the system-resource
status (by the SD-MTD dashboard in Fig. 1). Consequently, the proposed method can flexibly
reflect the requirements of each MTD technique, without requiring additional hardware, by
using a software-defined approach [18, 20].

The contributions of this study can be summarized as follows. First, user-defined
customization is secured by enabling the cloud computing system administrator to flexibly
manage the valid mutation range and cycle for the mutation elements of the implemented MTD.
Second, an orchestrated control is ensured by enabling the administrator to flexibly manage
and apply the implemented MTD to the protected service. Third, scalability is ensured by
allowing multiple MTD techniques [21–26] to be applied flexibly according to the security
level of the service provided through the cloud computing system.

The remainder of this paper is organized as follows. Section 2 analyzes and discusses the
limitations of existing studies on MTD techniques. Section 3 derives the SD-MTD system
requirements and describes its design and implementation. Section 4 presents the verification
results of proposed SD-MTD system’s accuracy. Finally, Section 5 concludes the study and
presents the future research directions.

2. Related Works
According to the mutation strategy, MTD techniques can be classified as shuffling-based,
diversity-based, or redundancy-based approaches. Shuffling periodically or aperiodically
rearranges or randomly mutates the main attributes of a system. Diversity periodically or
aperiodically mutates the system configuration, for example, the software operating
environment. Redundancy restores normal services by duplicating the main system attributes
in advance and replacing them with duplicated system attributes in a post-attack scenario.
Shuffling- and diversity-based MTD techniques primarily prevent an attack even if the target
information is exposed. In contrast, redundancy-based MTD techniques employ post-
measurement methods.

2.1 MTD based on system-attribute shuffling
In this section, we discuss the main results and characteristics of the system attribute-
shuffling-based MTD.

 Random port and address hopping (RPAH): Luo et al. [27] predefined a mutation
cycle and proposed a technique for changing the IP address and port number according
to the defined mutation cycle. They used a pseudo-random number generator to
generate virtual addresses for mutation. To practically apply this technique, the function
must be implemented in the target gateway to be protected. However, collisions may
occur because the randomly generated IP address and port number do not validate the
current in-use IP address and port number.

 Ghost-MTD: Park et al. [28] proposed ghost-MTD (gMTD), which mutates a protocol
using a one-time bit sequence (OTBS), which is shared securely in advance. When
OTBS is employed for mutation, only authorized service users who have information

1066 Kang et al.: SD-MTD: Software-Defined Moving-Target
Defense for Cloud-System Obfuscation

on the protocol-mutation pattern can communicate with the service module. Further,
gMTD can deceive an attacker by redirecting it to a decoy-hole module when the access
is abnormal. To apply this method to an actual operating system, it is necessary to
implement an additional technique for safely exchanging OTBSs.

2.2 MTD based on system-attribute diversity
In this section, we discuss the main results and characteristics of the system attribute
diversity-based MTD.

 Moving attack surfaces (MAS)-based MTD: Huang et al. [29] proposed a technique to
mutate the software stack based on the mutation cycle of events. They utilized several
web services, web servers, operating systems, and virtual technologies for mutation.
Only authorized service users who have information on the elements configured to
provide web services can use normal services. To apply this method to an actual
environment, it is necessary to construct virtual servers implemented with several web
servers, operating systems, and virtual technologies for the service to be protected.

 Programming language diversity (PLD)-based MTD: Taguinod et al. [30] proposed a
technique that mutates the web programming language for providing web services and
SQL language for managing stored data. The mutation is done by implementing a
translator, which mutates the SQL language by converting Python code into PHP code
and moving the data stored in MySQL to PostGreSQL. In an actual environment, the
limitations of the translator’s code conversion and the time required to transfer a large
amount of data can be a hindrance. Furthermore, important functions in the program
operation may be omitted during the mutation.

2.3 Limitations of MTD techniques
An analysis of existing MTD techniques revealed that, although each technique is capable of
deceiving attackers, their capabilities are limited when applied to actual cloud-computing
systems. First, they degrade the resource efficiency and management convenience of a cloud-
computing system because of their additional function implementation and system
introduction. Second, an MTD should be applied without disturbing the current operating
service. Third, it should be possible to address an increased attack complexity that may be
encountered when a single MTD is applied.

3. Design and Implementation of SD-MTD

3.1 Derivation of SD-MTD requirements

Cloud computing, which integrates container techniques to maximize efficiency, flexibility,
and economic feasibility, has attracted a significant attention. Concurrently, emerging MTD
techniques can reverse the information asymmetry of attackers and defenders in cloud-
computing systems with a high agility and flexibility. Accordingly, a system is required to
apply and manage the existing and future MTD techniques. Therefore, this study proposes a
software-defined MTD (SD-MTD) system to address an increased attack complexity by
applying a new technology based on an advanced MTD to an existing system. Prior to

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022 1067

designing and implementing the proposed SD-MTD, the following requirements should be
derived:

 User-defined customization: The MTD attribute to be applied for system defense and
mutation range and mutation cycle of each MTD attributes should be flexibly defined
and applied by the system administrator in a timely manner. This will help the system
administrator respond flexibly to a rapidly changing security environment.

 Orchestrated control: A system enhanced with MTD technology should be adaptable
not only to conventional MTD technologies but also to emerging MTD technologies.
To address this issue, it is necessary to develop a technology to flexibly accommodate
each MTD technology and orchestrate them centrally using software-defined
technology.

 Scalability: Conventional MTD techniques are limited in the face of an increased attack
complexity because their system resources are not scalable. This limitation can be
overcome by dynamically applying an MTD technology suitable for the protected
service according to the required security level and situation.

The design philosophy of SD-MTD is based on the above three requirements, and the design
and implementation for realizing each requirement will be described in the following section.

3.2 SD-MTD system design for cloud-system obfuscation
This section describes an SD-MTD system design that satisfies the requirements established
in the previous section. To ensure user-defined customization, orchestrated control, and
scalability, the SD-MTD system is composed of an SD-MTD dashboard, SD-MTD
orchestrator, SD-MTD agent, and SD-MTD connector modules. Fig. 2 shows the overall
architecture and conceptual operation flow of the system. Each component and operation flow
are described as follows:

Fig. 2. Main components of SD-MTD and overall operation flow to realize MTD

1068 Kang et al.: SD-MTD: Software-Defined Moving-Target
Defense for Cloud-System Obfuscation

 Ensuring user-defined MTD customization: The administrator can check the

implemented MTDs in advance, and then select the desired MTD technique to be
applied through the SD-MTD dashboard, as shown in Fig. 2. Subsequently, the
administrator defines a valid mutation range and cycle for the selected MTD. The
administrator-defined MTD is then delivered to the SD-MTD orchestrator module,
which generates a mutation list after verifying whether the administrator-defined
valid mutation range is correct. Thus, the SD-MTD system flexibly reflects the
requirements of each MTD technique by enabling the execution of administrator-
defined MTDs.

 Ensuring orchestrated control: When an MTD technology and its mutation rules are
confirmed by the administrator, its deployment will be formally described in the
MTD repository. Subsequently, the SD-MTD orchestration module generates scripts
to perform the MTD’s execution and verification routines. The generated scripts are
deployed and delivered to the SD-MTD agent and SD-MTD connector modules. The
above end-to-end routines are continuously managed and validated by the SD-MTD
orchestration module. Therefore, this study ensures an orchestrated control by
enabling the application of an MTD selected by the administrator through the SD-
MTD system.

 Ensuring scalable MTD: The SD-MTD agent and SD-MTD connector modules
operate the MTD routines delivered from the SD-MTD orchestration module.
However, depending on the security situation or available system resources, the MTD
technologies to be applied may be dynamically changed. Consequently, the SD-MTD
system is designed to ensure scalability by applying container and orchestration
technologies that can dynamically change and respond to the system on demand.

The design of the SD-MTD system can be summarized as follows. First, user-defined MTD
customization is ensured by enabling the system administrator to flexibly define a valid
mutation range and cycle for the mutation elements of the MTD to be applied. Second,
orchestrated control is ensured by enabling the administrator to flexibly manage and apply the
implemented MTD to the service to be protected. Third, scalability is ensured by flexibly
applying multiple MTD techniques according to the security level of the service provided
through the cloud computing system.

3.3 SD-MTD implementation for cloud-system obfuscation
This section describes the implementation of the SD-MTD system for existing and future MTD
techniques. The structure of the implemented SD-MTD system is shown in Fig. 2. It is
composed of an SD-MTD dashboard, SD-MTD orchestrator, SD-MTD agent, SD-MTD
connector, and service modules. The SD-MTD dashboard is provided for the SD-MTD
administrator, the SD-MTD connector module is provided for the authorized user, and the SD-
MTD orchestrator, SD-MTD agent, and service modules are provided for the cloud-computing
system.

 SD-MTD dashboard: The SD-MTD dashboard is provided to the administrator. In the
dashboard, we can define the valid mutation range and cycle of a previously

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022 1069

implemented MTD. Furthermore, the MTD can be implemented according to the
defined valid mutation range and cycle, and then applied to the service to be protected.
It is necessary to verify the validity of the MTD implemented by the administrator
before its application to the service to be protected. To achieve this, the MTD
implemented through the SD-MTD dashboard is delivered to the SD-MTD orchestrator
module, which verifies its validity.

 SD-MTD orchestrator module: The SD-MTD orchestrator module is provided to a
container-based cloud computing system. It verifies that the MTD is implemented
through the SD-MTD dashboard. The resources of the container-based cloud-computing
system to which the SD-MTD is applied are monitored to verify the valid mutation range
of the MTD implemented from the SD-MTD dashboard. For example, when applying
an MTD to IP shuffling, the MTD is implemented by considering whether the IP address
being used is within the valid mutation range inputted from the SD-MTD dashboard.
Based on this, the MTD implemented in the SD-MTD dashboard is verified, and a
mutation list is generated. Subsequently, the list is transmitted to the SD-MTD agent
and SD-MTD connector modules to apply it to the communication.

 SD-MTD agent and SD-MTD connector modules: The SD-MTD agent and SD-MTD
connector modules are delivered to the container-based cloud-computing system and
the authorized service user, respectively, and the MTD implemented from the SD-MTD
dashboard is applied to the communication. Communication is performed according to
the mutation list, which is generated when the valid mutation range defined by the
administrator is determined to be correct through the SD-MTD orchestrator module, and
according to the mutation cycle defined through the SD-MTD dashboard. The SD-MTD
agent and SD-MTD connector modules obfuscate the communication between the
cloud-computing system and the authorized service user according to the MTD defined
by the administrator. Further, the SD-MTD agent and SD-MTD connector modules
verify the obfuscated communication; if the communication is determined to be correct,
it is converted into a normal communication result and delivered to the cloud system
and service user.

Fig. 3. Dashboard interacting SD-MTD testbed for performance evaluation

1070 Kang et al.: SD-MTD: Software-Defined Moving-Target
Defense for Cloud-System Obfuscation

 Service module: This is a service provided to authorized service users. The service
execution is based on a container and it be operated in various forms, such as web
services. Unauthorized service users can perform malicious activities by exploiting the
vulnerabilities in the cloud-computing system and service modules. Thus, the MTD is
employed to ensure the security of service modules. In this study, the Apache web
service, which is operated in actual cloud-computing systems, is implemented to verify
the accuracy of the proposed SD-MTD system.

4 Testbed Construction and Evaluation

4.1 Testbed for SD-MTD evaluation
IP shuffling and port shuffling, which are network-based MTDs, were implemented to verify
the accuracy of the SD-MTD system. The implemented IP shuffling and port shuffling each
generate a mutation list according to the key values and valid mutation range that are input
and defined through the SD-MTD dashboard and then obfuscate the communication according
to the defined mutation cycle. The dashboard provides an interface in the Windows
environment to continuously request the Apache service and check whether the applied MTD
is operating. The administrator’s convenience was enhanced by implementing a GUI
environment to connect with the implemented MTD, rather than accessing the virtual machine
with the MTD implementation. The SD-MTD is composed of request generation, MTD
management, and visualization functions, and the implemented SD-MTD dashboard is shown
in Fig. 3. First, a function checks the execution status of the network-based MTD, which is
implemented through continuous requests. Second, the valid mutation range and cycle are
configured for the implemented IP shuffling and port shuffling. Then, the MTD is applied
according to the configured valid mutation range and cycle. Third, the CPU, memory
consumption, IP address, and port number of the Apache service are verified, and the resource
status of the experimental environment is monitored.

Fig. 4. Experiment environment for accuracy verification of the SD-MTD

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022 1071

4.2 Functional verification of the SD-MTD implementation
We measured the behavior accuracy of the SD-MTD system. We conducted an experiment on
a server equipped with an Intel(R) CoreTM i7-8700 and 32 GB of RAM. For this experiment,
we created user and server system virtual machines (VMs) with 2 vCPUs, 2 GB memory, and
Centos 7 OS, as shown in Fig. 4.

4.2.1. Functional verification of the SD-MTD user-defined customization and
centralized control
This experiment defined the valid mutation range and cycle of the MTD through the SD-MTD
dashboard and evaluated whether it was executed according to the defined values. In Fig. 5(a),
the valid mutation range and mutation cycle are defined for IP shuffling. The network C class
was configured with a 10 s mutation cycle for the experiment. In Fig. 5(b), the valid mutation
range and cycle are defined for port shuffling. The port was configured with a 20 s mutation
cycle in the port number range of 60,000–65,535 for the experiment. In a correct SD-MTD
implementation, a valid mutation range and cycle should be defined, and the MTD should be
executed according to the defined values. Accuracy verification of the user-defined
customization and centralized control of the SD-MTD system revealed that the MTD was
executed correctly according to the defined mutation range and mutation cycle.

Fig. 5. Request-response messages for (a) IP shuffling and (b) port shuffling

4.2.2 Functional verification of the SD-MTD scalability
In this experiment, multiple MTD techniques were applied to the Apache service through the
SD-MTD dashboard, and each MTD technique was checked for its operating status. Fig. 6
illustrates the application of the implemented IP shuffling and port shuffling to the Apache
service. To conduct the experiment, an arbitrary network class and mutation cycle were
defined and the setup was verified to evaluate whether the MTD techniques were executed
according to the defined values. In a correct SD-MTD implementation, multiple MTD

1072 Kang et al.: SD-MTD: Software-Defined Moving-Target
Defense for Cloud-System Obfuscation

techniques are simultaneously applied, and each MTD technique should be executed.
Accuracy verification of SD-MTD scalability revealed that multiple MTD techniques were
applied to the Apache service and operated accordingly.

Fig. 6. IP and port shuffling applied to the Apache service

5 Conclusion
In recent years, container techniques have been integrated into cloud computing environments
to maximize their efficiency, flexibility, and economic feasibility. Cloud computing systems,
which offer a high agility and flexibility, have enabled the implementation of various MTD
techniques. However, an analysis of existing MTD techniques revealed that although each
technique was capable of deceiving attackers, they had limitations when applied to an actual
cloud-computing system. These include wasted resources, management complexity caused by
the additional function implementation and system introduction, and an increase in attack
complexity. The proposed SD-MTD system was composed of an SD-MTD dashboard and SD-
MTD orchestrator, SD-MTD agent, and SD-MTD connector modules. The administrator first
selected the MTD for the service to be protected from the SD-MTD dashboard, and then
defined its valid mutation range and mutation cycle. The SD-MTD orchestrator module
verified that a valid range of mutation elements had been defined through the dashboard and
created a mutation list. The SD-MTD agent and SD-MTD connector modules were located
between the services provided by the cloud computing system and authorized service user.
They obfuscated the communication according to the mutation list transmitted from the SD-
MTD orchestrator module and the mutation cycle configured from the SD-MTD dashboard.
The limitations of existing MTD techniques were derived prior to designing and implementing
the SD-MTD system proposed in this study. Subsequently, the SD-MTD system requirements
were derived, and the proposed system was designed and implemented according to these
requirements. First, to achieve a flexible management, the system was designed to enable the
administrator to monitor the system-resource status in real time through the implemented
dashboard and configure a valid mutation range and mutation cycle for the MTD techniques.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022 1073

Second, when multiple MTD techniques are implemented, the economic feasibility of the
cloud computing system is compromised because each MTD technique has different
requirements. To address this, a software-defined technique was employed to flexibly reflect
the requirements. Third, an MTD has some limitations when faced with an increased attack
complexity because of limited system resources. This limitation can be resolved by applying
multiple MTD techniques. The SD-MTD system implemented in this study is expected to
flexibly apply and manage both existing and future MTD techniques. In a follow-up study, we
intend to apply context-aware techniques to control the MTD and automate the application
according to the service security level by situation.

References
[1] C. Pahl, A. Brogi, J. Soldani and P. Jamshidi, "Cloud Container Technologies: A State-of-the-Art

Review," IEEE Transactions on Cloud Computing, vol. 7, no. 3, pp. 677-692, 1 July-Sept. 2019.
Article (CrossRef Link)

[2] Z. Kozhirbayev and R. O. Sinnott, "A performance comparison of container-based technologies
for the cloud," Future Generation Computer Systems, 68, 175-182, 2017. Article (CrossRef Link)

[3] S. He, L. Guo, Y. Guo, C. Wu, M. Ghanem et al., "Elastic Application Container: A Lightweight
Approach for Cloud Resource Provisioning," in Proc. of 2012 IEEE 26th International Conference
on Advanced Information Networking and Applications, pp. 15-22, 2012. Article (CrossRef Link)

[4] H. Jin, Z. Li, D. Zou, B. Yuan, "DSEOM: A Framework for Dynamic Security Evaluation and
Optimization of MTD in Container-Based Cloud," IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 3, pp. 1125-1136, 1 May-June 2021. Article (CrossRef Link)

[5] X. Gao, Z. Gu, M. Kayaalp, D. Pendarakis and H. Wang, "ContainerLeaks: Emerging Security
Threats of Information Leakages in Container Clouds," in Proc. of 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), pp. 237-248, 2017.
Article (CrossRef Link)

[6] X. Xu, H. Yu and X. Pei, "A Novel Resource Scheduling Approach in Container Based Clouds,"
in Proc. of 2014 IEEE 17th International Conference on Computational Science and Engineering,
pp. 257-264, 2014. Article (CrossRef Link)

[7] A. Chung, J. Park, and G. Ganger, "Stratus: cost-aware container scheduling in the public cloud,"
in Proc. of the ACM Symposium on Cloud Computing (SoCC '18). Association for Computing
Machinery, New York, NY, USA, 121–134, 2018. Article (CrossRef Link)

[8] W. Peng, F. Li, C. -T. Huang and X. Zou, "A moving-target defense strategy for Cloud-based
services with heterogeneous and dynamic attack surfaces," in Proc. of 2014 IEEE International
Conference on Communications (ICC), pp. 804-809, 2014. Article (CrossRef Link)

[9] H. Alavizadeh, J. Jang-Jaccard and D. S. Kim, "Evaluation for Combination of Shuffle and
Diversity on Moving Target Defense Strategy for Cloud Computing," in Proc. of 2018 17th IEEE
International Conference On Trust, Security And Privacy In Computing And Communications/
12th IEEE International Conference On Big Data Science And Engineering
(TrustCom/BigDataSE), pp. 573-578, 2018. Article (CrossRef Link)

[10] A. Shaer, Ehab, Q. Duan, and J. Jafarian, "Random host mutation for moving target defense," in
Proc. of International Conference on Security and Privacy in Communication Systems, Springer,
Berlin, Heidelberg, pp. 310-327, 2012. Article (CrossRef Link)

[11] C. Lei, H. Zhang, J. Tan, Y. Zhang, X. Liu, "Moving Target Defense Techniques: A Survey,"
Security and Communication Networks, vol. 2018, Article ID 3759626, 25 pages, 2018.
Article (CrossRef Link)

[12] P. Kampanakis, H. Perros and T. Beyene, "SDN-based solutions for Moving Target Defense
network protection," in Proc. of IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks, pp. 1-6, 2014. Article (CrossRef Link)

[13] E. Al-Shaer, "Toward network configuration randomization for moving target defense," Moving
Target Defensem, Springer, New York, NY, 153-159, 2011. Article (CrossRef Link)

http://doi.org/10.1109/TCC.2017.2702586
https://doi.org/10.1016/j.future.2016.08.025
http://doi.org/10.1109/AINA.2012.74
http://doi.org/10.1109/TDSC.2019.2916666
http://doi.org/10.1109/DSN.2017.49
http://doi.org/10.1109/CSE.2014.77
http://doi.org/10.1145/3267809.3267819
http://doi.org/10.1109/ICC.2014.6883418
http://doi.org/10.1109/TrustCom/BigDataSE.2018.00087
http://doi.org/10.1007/978-3-642-36883-7_19
https://doi.org/10.1155/2018/3759626
http://doi.org/10.1109/WoWMoM.2014.6918979
http://doi.org/10.1007/978-1-4614-0977-9_9

1074 Kang et al.: SD-MTD: Software-Defined Moving-Target
Defense for Cloud-System Obfuscation

[14] T. E. Carroll, M. Crouse, E. W. Fulp and K. S. Berenhaut, "Analysis of network address shuffling
as a moving target defense," in Proc. of 2014 IEEE International Conference on Communications
(ICC), pp. 701-706, 2014. Article (CrossRef Link)

[15] J. Haadi, E. Al-Shaer, and Q. Duan, "Openflow random host mutation: transparent moving target
defense using software defined networking," in Proc. of the first workshop on Hot topics in
software defined networks, pp. 127-132, 2012. Article (CrossRef Link)

[16] P. Dawson, and A. Butler, “IT Market Clock for Server Technology and SDx, 2014,” Gartner
Report 2014. 9.

[17] A. Gupta, L. Vanbever, M. Shahbaz, S. Donovan, B. Schlinker et al., "Sdx: A software defined
internet exchange," ACM SIGCOMM Computer Communication Review, 44.4, 551-562, 2014.
Article (CrossRef Link)

[18] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk and A. Rindos, "SDDC: A
Software Defined Datacenter Experimental Framework," in Proc. of 2015 3rd International
Conference on Future Internet of Things and Cloud, pp. 189-194, 2015. Article (CrossRef Link)

[19] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown, "Where is the debugger
for my software-defined network?," in Proc. of the first workshop on Hot topics in software defined
networks (HotSDN '12), Association for Computing Machinery, New York, NY, USA, 55–60,
2012. Article (CrossRef Link)

[20] A. Voellmy, and J. Wang, "Scalable software defined network controllers," ACM SIGCOMM
Computer Communication Review, vol. 42, no. 4, pp. 289-290, 2012. Article (CrossRef Link)

[21] F. Chong, "National cyber leap year summit 2009: Co-chairs’ report," NITRD Program, 2009.
[22] J. Cho, D. Sharma, H. Alavizadeh, S. Yoon, B. Noam et al, "Toward proactive, adaptive defense:

A survey on moving target defense," IEEE Communications Surveys & Tutorials, 22.1, 709-745,
2020. Article (CrossRef Link)

[23] M. Green, "Characterizing network-based moving target defenses," in Proc. of the Second ACM
Workshop on Moving Target Defense, pp. 31-35, 2015. Article (CrossRef Link)

[24] H. Okhravi et al., “Survey of cyber moving target techniques,” Massachusetts Inst of Tech
Lexington Lincoln Lab, 2018. Available: https://apps.dtic.mil/sti/pdfs/AD1055276.pdf

[25] B. Hong, and D. Kim, "Assessing the effectiveness of moving target defenses using security
models," IEEE Transactions on Dependable and Secure Computing, 13.2, 163-177, 2016.
Article (CrossRef Link)

[26] A. Alshamrani, S. Myneni, A. Chowdhary, D. Huang, "A Survey on Advanced Persistent Threats:
Techniques, Solutions, Challenges, and Research Opportunities," IEEE Communications Surveys
& Tutorials, Vol. 21, no. 2, pp. 1851-1877, Secondquarter 2019. Article (CrossRef Link)

[27] Y. -B. Luo, B. -S. Wang, X. -F. Wang, X. -F. Hu, G. -L. Cai and H. Sun, "RPAH: Random Port
and Address Hopping for Thwarting Internal and External Adversaries," in Proc. of 2015 IEEE
Trustcom/BigDataSE/ISPA, pp. 263-270, 2015. Article (CrossRef Link)

[28] J. Park, Y. Lee, K. Kang, S. Lee, and K. Park, "Ghost-MTD: Moving Target Defense via Protocol
Mutation for Mission-Critical Cloud Systems," Energies, 13.8, 1883, 2020. Article (CrossRef Link)

[29] Y. Huang, and A. Ghosh, "Introducing diversity and uncertainty to create moving attack surfaces
for web services," Moving target defense, Springer, New York, NY, 131-151, 2011.
Article (CrossRef Link)

[30] M. Taguinod, A. Doupé, Z. Zhao and G. Ahn, "Toward a Moving Target Defense for Web
Applications," in Proc. of 2015 IEEE International Conference on Information Reuse and
Integration, pp. 510-517, 2015. Article (CrossRef Link)

http://doi.org/10.1109/ICC.2014.6883401
https://doi.org/10.1145/2342441.2342467
https://doi.org/10.1145/2740070.2626300
http://doi.org/10.1109/FiCloud.2015.127
https://doi.org/10.1145/2342441.2342453
https://doi.org/10.1145/2377677.2377735
https://doi.org/10.1109/COMST.2019.2963791
https://doi.org/10.1145/2808475.2808484
https://apps.dtic.mil/sti/pdfs/AD1055276.pdf
http://doi.org/10.1109/TDSC.2015.2443790
http://doi.org/10.1109/COMST.2019.2891891
http://doi.org/10.1109/MCOM.1986.1092946
https://doi.org/10.3390/en13081883
http://doi.org/10.1007/978-1-4614-0977-9_8
http://doi.org/10.1109/IRI.2015.84

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 16, NO. 3, March 2022 1075

Ki-Wan Kang received the B.S. degree in information security engineering from
Soonchunhyang University, South Korea, in 2019, and the M.S degree in information security
engineering from Sejong University, South Korea, in 2021. His research interests include
cloud computing security and system security.

Jung Take Seo received the M.S. degree in Computer Engineering from Ajou University,
South Korea, in 2001, and the Ph.D. degree in Information Security Engineering from Korea
University, South Korea, in 2006. He worked for National Security Research Institute as a
senior researcher. He is currently an Associate Professor with the Department of Computer
Engineering, Gachon University. His research interests include CPS security, ICS
cybersecurity, smart grid security, nuclear power plant security, smart factory security, smart
city security, and automotive cybersecurity.

Sung Hoon Baek received the B.S. degree in electronics engineering from Kyungpook
National University, Korea, in 1997, the M.S. degree in electrical engineering from the Korea
Advanced Institute of Science and Technology (KAIST) in 1999, the Ph.D. degree in
electrical engineering from KAIST in 2008. He worked for Electronics Telecommunication
Research Institute (ETRI) as an R&D staff from 1999 to 2005 and for Samsung Electronics
as a senior R&D staff from 2008 to 2011. He has been an associate professor in the department
of computer engineering at Jungwon University since 2011. His research interests include
storage system, operating system, security issues in mobile computing systems, and
particulate matter monitoring.

Chulwoo Kim received the B.S. degree in computer science from Yonsei University, South
Korea, in 2005, the M.S. degree in computer science from Pace University, New York, in
2018. He is currently working for LG CNS America as a senior data engineer. His research
interests include computer vision, big data, and machine learning.

Ki-Woong Park received the B.S. degree in computer science from Yonsei University,
South Korea, in 2005, the M.S. degree in electrical engineering from the Korea Advanced
Institute of Science and Technology (KAIST) in 2007, and the Ph.D. degree in electrical
engineering from KAIST in 2012. He received a 2009–2010 Microsoft Graduate Research
Fellowship. He worked for National Security Research Institute as a senior researcher. He has
been a professor in the department of computer and information security at Sejong University.
His research interests include security issues for cloud and mobile computing systems as well
as the actual system implementation and subsequent evaluation in a real computing system.

