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Abstract 

 
Cognitive radio (CR) is a feasible intelligent technology and can be used as an effective 
solution to spectrum scarcity and underutilization. As the key function of CR, cooperative 
spectrum sensing (CSS) is able to effectively prevent the harmful interference with primary 
users (PUs) and identify the available spectrum resources by exploiting the spatial diversity of 
multiple secondary users (SUs). However, the open nature of the cognitive radio networks 
(CRNs) framework makes CSS face many security threats, such as, the malicious user (MU) 
launches Byzantine attack to undermine CRNs. For this aim, we make an in-depth analysis of 
the motive and purpose from the MU’s perspective in the interweave CR system, aiming to 
provide the future guideline for defense strategies. First, we formulate a dynamic Byzantine 
attack model by analyzing Byzantine behaviors in the process of CSS. On the basis of this, we 
further make an investigation on the condition of making the fusion center (FC) blind when 
the fusion rule is unknown for the MU. Moreover, the throughput and interference to the 
primary network are taken into consideration to evaluate the impact of Byzantine attack on the 
interweave CR system, and then analyze the optimal strategy of Byzantine attack when the 
fusion rule is known. Finally, theoretical proofs and simulation results verify the correctness 
and effectiveness of analyses about the impact of Byzantine attack strategy on the throughput 
and interference. 
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1. Introduction 

Due to the rapid advances in wireless communication systems, the demand for spectrum 
resources has increased sharply, so the spectrum resources cannot meet the needs of wireless 
devices and applications. And yet, in another respect, it has been proved by Federal 
Communications Commission (FCC) research that the spectrum scarcity is a direct 
consequence of the underutilization of the frequency spectrum by primary users (PUs) either 
temporally or spatially in fact. Therefore, cognitive radio (CR) is proposed to enable secondary 
users (SUs) to communicate in the authorized frequency band, with the aim of not affecting 
the PU’s normal operation [1]. In a interweave CR operation mode [2], CR allows secondary 
users (SUs) using spectrum sensing methods to detect whether the PU’s signal is present or 
not [3], and then the SUs opportunistically access the channel (when the PU is absent, which 
presents that the channel is underutilized by the PU) but without causing excessive interference 
to the primary network. Therefore, CR is able to solve the dilemma between the spectrum 
underutilization and scarcity [4]. 

However, due to the inherent nature of wireless propagation, the single-node spectrum 
sensing is prone to be affected by many factors, such as shadow effect, multipath fading, etc., 
the spectrum sensing performance is prone to be affected. In view of this, cooperative spectrum 
sensing (CSS) uses the spatial diversity of SUs to improve the spectrum sensing performance 
by the diversity gain, which significantly increases the sensing accuracy. Now it has become 
the primary method for the fusion center (FC) to detect whether the PU occupies the spectrum. 
In the CSS, SUs sends the original observations (soft-combining) or their local decisions (hard-
combining) to the FC, and then the FC makes a global decision about the PU’s status through 
a specific fusion rule [5]. There is no doubt that CSS is able to improve the accuracy of the PU 
detection. However, it opens a hole to the malicious users (MUs) who take part in the spectrum 
sensing and submit falsified sensing information to the FC to implement Byzantine attack. 
Through Byzantine attack, MUs mislead the FC to make wrong global decision by submitting 
falsified sensing information, thereby causing the following effects: on the one hand, MUs can 
prevent normal users (NUs) from occupying spectrum resources the in order to selfishly access 
the channel; on the other hand, MUs allure NUs to access the channel when the PU is using it 
and then cause excessive interference to the PU’s normal communication. 

Therefore, protecting CSS from Byzantine attack is indispensable and devising a 
comprehensive and in-depth analysis on the characteristics and impact of Byzantine attack 
becomes essential. 
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1.1 Related Work 
The area of CSS has been a very active field of research in the past, security problems in CRNs 
have gained attention only in the last decade. Both [6] and [7] used a trusted node assistance 
to verify the correctness of reputation and data of participating CSS nodes, with the aim of 
securing CSS. In [8], the FC allocates a reasonable weight value (depending on historical 
sensing behavior of nodes) according to the submitted observations' evaluation to make the 
global decision. In [9], an algorithm was proposed by Z. Sun et al. to select better sensing 
strategies either collaboratively or independently. In [10], M. Ningrinla et al. proposed a 
lightweight intrusion detection scheme and intrusion detection scheme using the Markov chain 
model based on historical spectrum sensing data to detect intrusion and identify Byzantine 
attackers. In [11][12], a reputation-based strategy is proposed by A. S. Rawat et al. to identify 
Byzantine attackers, but Byzantine attack identification can take effect in the proposed system 
when the malicious percentage is less than 50%. Nevertheless, the above-mentioned methods 
either rely heavily on the assistance of a third-party trusted node or are only applicable for 
small-scale Byzantine attack scenarios. In fact, the reliable trusted node is not easy to obtain 
in a realistic CRN, this assumption appears to be too ideal. Otherwise, since a low percentage 
of MUs cannot compromise the FC, most of existing Byzantine identification algorithms adopt 
the FC’s global decision as the evaluation criterion of the reputation management mechanism 
[13], apparently, they overlook the possibility of large-scale Byzantine attack. 

Compared to the ideal assumptions in the aforementioned works, an incentive method based 
on peer-peer prediction was proposed by Y. Gan et al. to identify and punish attackers and 
encourage SU to send accurate reports in [14]. An incentive-compatible mechanism was 
designed by W. Wang et al.  to provide a moderate punishment to MUs based on the moral 
hazard principal-agent model in [15]. With the prior knowledge of attack behaviors, the closed-
form expressions of the identification performance was derived by L. Zhang et al. in [16]. 
Considering that the unavailable prior knowledge, the maximized likelihood estimation is 
made based on the extended sensing to optimize the optimal performance. In [17], J. Wu et al. 
proposed a low-complexity sequential 0/1 defense strategy against strategic Byzantine attack 
for CSS. Both [18] and [19] made use of estimation algorithm to estimate attack parameters, 
aiming to adopt appropriate defense strategies. In contrast to the simplified hostile scenario, 
the above works consider some relatively complex and flexible Byzantine attack strategies 
from various aspects, and then propose corresponding defense strategies by means of 
estimation algorithms. But for some special attack model (i.e., probabilistic Byzantine attack), 
estimation algorithms have to take a long sensing observation period and then confirms attack 
parameters before deploying defense strategies. 

Bedsides, J. Ren et al. proposed an algorithm which take Byzantine attack and energy 
efficiency into consideration in [20]. F. Ye et al. made use of evidence theory and credibility 
calculation where evaluates the holistic credibility of SUs from both the real-time difference 
and statistical sensing behavior of SUs in [21] to propose a CSS method. In [22], W. 
Hashlamoun et al. proposed a mechanism to mitigate the Byzantine attack by partitioning 
sensors into groups and measured the CSS performance by introducing a weighted Kullback-
Leibler divergence indicator. Unfortunately, [20-24] only consider the simple always attack, 
such as always yes/no/false attack, but in fact, for a rational MU, the always attack is more 
aggressive and easily identified by the FC’s defense strategy. Otherwise, numerous efforts on 
Byzantine attack identification and removal for CSS have been made in [25-26] and references 
therein. 
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1.2 Our Contributions 
Through analyses on the above literature, many efforts have been devoted to studying 
Byzantine attack for CSS, few studies consider rational Byzantine attackers from the malicious 
perspective. Because of the incomplete analysis of Byzantine behavior, the defensive strategy 
or algorithms always have various unrealistic assumptions and some limitations, hence CSS 
also poses many new research challenges. 

The previous works always start with the CSS security to deal with Byzantine attack and 
fail in considering the motives and purpose of MUs, in this paper, we relax the requirements 
of the parameters on Byzantine attack, and reconsider Byzantine attack behaviors in CSS. 
Further, we make an in-depth analysis on the impact of Byzantine attack of the achievable 
throughput of CRNs and interference to the PU under various scenarios. In summary, the main 
contributions of this paper can be summarized as follows: 

· We start with Byzantine behaviors in CSS to develop a dynamic Byzantine attack model 
from the malicious perspective. Under this generalized attack model, the MU can 
conduct various attack strategies by arbitrarily adjusting attack parameters and does not 
have any restrictions. Since the proposed dynamic Byzantine attack model does not 
have any ideal assumptions, it provides a more extensive analysis in various complex 
scenarios. 

· Under two scenarios where the fusion rule is unknown or known for MUs, the blind 
problem and the impact of Byzantine attack on the throughput and interference are taken 
into account. When the fusion rule is unknown, according to the proposed attack model, 
we derive the minimal percentage of MUs and condition of which making the FC blind. 
When the fusion rule is known, we analyze the impact of Byzantine attack on the 
achievable throughput of CRNs and interference to the PU, and conduct the optimal 
attack strategy to obtain maximal throughput and interference. 

· Finally, we simulate the real effect of Byzantine attack parameters on CRNs in the 
various scenarios, and by a series of numerical simulations, we corroborate correctness 
and effectiveness of theoretical analyses about the impact of Byzantine attack strategy 
on the throughput and interference from the malicious perspective. 

1.3 Organization 
The remainder of this paper is organized as follows. Section 2 introduces the system model, 
including the spectrum sensing, Byzantine attack model, and throughput evaluation. In Section 
3, the blind condition of making the FC blind is analyzed and derived when the fusion rule is 
unknown. Section 4 analyzes the optimal attack strategy to maximize the achievable 
throughput and interference when the fusion rule is known. Simulation results are provided in 
Section 5 to verify our theoretical analyses. Finally, conclusions and further work are drawn 
in Section 6. 

2. System Model 
In this section, the spectrum sensing model based on an interweave operation mode is 
presented in an infrastructure-based CRN. Following the spectrum sensing model, we propose 
a dynamic Byzantine attack model according to Byzantine behaviors from the MU’s 
perspective. Then on the basis of the periodic spectrum sensing frame structure, we further 
evaluate the achievable throughput as the performance metric of CRNs, respectively. 
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2.1 Spectrum Sensing Model 
We consider an infrastructure-based CRN in an interweave operation mode, which 
consists of a FC, a PU, 𝑁𝑁 several collaborative SUs, and the malicious percentage 𝜌𝜌, as 
shown in Fig. 1. In order to realize the detection for the PU, all SUs make use of the local 
spectrum sensing methods to detect the PU signal. According to the binary hypothesis test 
problem, at the 𝑘𝑘-th sensing interval, the received sampled signal 𝑦𝑦𝑖𝑖(𝑛𝑛) of the 𝑖𝑖-th SU can be 
described as 

𝑦𝑦𝑖𝑖(𝑛𝑛) = �𝑢𝑢𝑖𝑖
(𝑛𝑛),                        𝐻𝐻0

ℎ𝑖𝑖(𝑘𝑘)𝑠𝑠(𝑛𝑛) + 𝑢𝑢𝑖𝑖(𝑛𝑛), 𝐻𝐻1
                                          (1) 

where 𝐻𝐻0 and 𝐻𝐻1 represent the two hypotheses that the licensed frequency band is idle or 
occupied (i.e., the PU is absent or present), 𝑢𝑢𝑖𝑖(𝑛𝑛) is the additional white Gaussian noise 
(AWGN) with mean zero and variance 𝜎𝜎𝑢𝑢2, 𝑠𝑠(𝑛𝑛) is the SU’s received signal transmitted by the 
PU, ℎ𝑖𝑖(𝑛𝑛) is the channel gain, 𝑠𝑠(𝑛𝑛) and 𝑢𝑢𝑖𝑖(𝑛𝑛) are assumed to be independent. 

 
Fig. 1. CSS in the presence of MUs. 

 
Currently, there are a variety of local spectrum sensing methods, including energy detection, 

matched filter, cyclostationary detection, and wavelet detection. Among these methods, the 
energy detection is commonly adopted because it does not require the PU signal’s prior 
information and has a low implementation complexity. Then, the test statistic 𝑦𝑦𝑖𝑖(𝑡𝑡) for energy 
detector at the 𝑘𝑘-th sensing interval is calculated as 

𝑇𝑇𝑖𝑖(𝑘𝑘) = � |𝑦𝑦𝑖𝑖(𝑡𝑡)|2 
𝑆𝑆

𝑡𝑡=1
                                                        (2) 

According to the central limit theorem, 𝑇𝑇𝑖𝑖(𝑘𝑘) can be approximated by a Gaussian 
distribution (when the number of samples 𝑆𝑆 is large enough) as follows [27] 

𝑇𝑇𝑖𝑖(𝑘𝑘) = �𝒩𝒩
(𝑆𝑆𝜎𝜎𝑢𝑢2, 2𝑆𝑆𝑆𝑆𝑢𝑢4),                                             𝐻𝐻0

𝒩𝒩(𝑆𝑆(𝛾𝛾𝑖𝑖(𝑘𝑘) + 1)𝜎𝜎𝑢𝑢2, 2𝑆𝑆(𝛾𝛾𝑖𝑖(𝑘𝑘) + 1)2𝜎𝜎𝑢𝑢4), 𝐻𝐻1
                              (3) 

where 𝛾𝛾𝑖𝑖(𝑘𝑘) is the signal-to-noise ratio (SNR) of the PU measured at the 𝑖𝑖-th SU. 
Assuming that 𝜏𝜏  represents the sensing time, the received signal is sampled at sampling 

frequency 𝑓𝑓𝑠𝑠, therefore the local spectrum sensing performance for the 𝑖𝑖-th SU, i.e., the local 
false alarm probability and the local detection probability are respectively given by 

𝑃𝑃𝑓𝑓,𝑖𝑖 = 𝑃𝑃(𝑇𝑇𝑖𝑖(𝑘𝑘) > 𝜆𝜆|𝐻𝐻0) = 𝑄𝑄 ��
𝜆𝜆
𝜎𝜎𝑢𝑢2

− 1��𝜏𝜏𝑓𝑓𝑠𝑠�                                                    (4) 

𝑃𝑃𝑑𝑑,𝑖𝑖 = 𝑃𝑃(𝑇𝑇𝑖𝑖(𝑘𝑘) > 𝜆𝜆|𝐻𝐻1) = 𝑄𝑄��
𝜆𝜆
𝜎𝜎𝑢𝑢2

− 𝛾𝛾𝑖𝑖(𝑘𝑘) − 1��
𝜏𝜏𝑓𝑓𝑠𝑠

2𝛾𝛾𝑖𝑖(𝑘𝑘) + 1�
                    (5) 
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where 𝑄𝑄(·) is the complementary distribution function of the standard Gaussian, 𝜆𝜆  is the 
predetermined threshold. 

2.2 Byzantine Attack Model 
After all SUs individually performs the spectrum sensing, they should continue submitting a 
binary decision to the FC for the global decision making. Though cooperative paradigms 
mitigate the negative effect of the nature of wireless propagations, but open a door for different 
attacks, such as Byzantine attack. In Byzantine attack, the MU sends falsified local decision 
report about the PU status to the FC and intentionally confuse the FC. 

Many efforts have been devoted to studying Byzantine attack in CSS, including attack 
model and defense strategies, i.e., [24] and references therein. To be specific, Byzantine attack 
model has received far less attention than Byzantine defense, such as, many researches only 
focus on simple always yes/no/false attacks without dealing with more sophisticated malicious 
behaviors. There is no doubt that such an always attacker is easy to be identified and removed 
from CSS. This is to say, if the analysis on Byzantine attack behavior is not thorough enough, 
it is impossible to conduct a robust defense strategy. 

To formulate a more generalized and flexible Byzantine attack model, we conduct 
theoretical study to dissect Byzantine behaviors of MUs. In details, when the MU deliberately 
sends falsified spectrum sensing data to the FC, its final goal is to force the FC into making a 
wrong global decision. On the one hand, when a MU has detected that the PU is absent, it 
falsifies the decision report 0 into 1 and then deceives the FC into declaring the global decision 
as 1. As a result, the FC broadcasts that the PU is using the channel, then NUs cannot access 
the channel to avoid causing interference to the PU, and can only continue spectrum sensing 
in the next sensing frame. Finally, the MUs can exclusively occupy the channel that is not 
actually being used by the PU. On the other hand, when a MU has detected that the PU is 
present, the MU falsifies the decision report 1 into 0, its objective is to induce the FC to 
announce the global decision 1 into 0. This is to say, the FC may inform SUs that the PU is 
absent and they can access the channel, but in fact the PU is still using the channel, thereby 
causing harmful interference to the PU. 

The above two situations are the most extreme impact of Byzantine attacks on CSS. In 
consideration of their own attack risks, MUs do not always adopt such extreme attack 
strategies because extreme attack strategies will soon fail to deploy due to low reputation in 
common reputation-based methods. From a long-term perspective, the intermittent or interval 
attack strategies will not be discovered immediately, the MU has a certain degree of 
concealment and remains in CRNs for a long time [28]. In this regard, we start with a 
probabilistic attack strategy to develop a generalized and flexible Byzantine attack model. 

 

 
Fig. 2.  Dynamic Byzantine attack model. 
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MUs are equipped with the same spectrum sensing capability as NUs, the NU honestly 
submits a binary decision report to the FC while the MU submits a falsified decision report 
with a certain probability after all SUs perform the local spectrum sensing, as shown in Fig. 2. 
In details, when the local decision 𝑆𝑆𝑖𝑖 is 0, the MU submits 1 to the FC with the probability 𝛼𝛼; 
when 𝑆𝑆𝑖𝑖 = 1 , the MU submits 0 to the FC with the probability 𝛽𝛽 . From the malicious 
perspective, the MU can conduct various attack strategies by varying the flipping probability 
𝛼𝛼 and 𝛽𝛽 from 0 to 1. Such as, when 𝛼𝛼 = 1 or 𝛽𝛽 = 1, the Byzantine attack is the always yes or 
always no attack at this time while it is the always false attack when 𝛼𝛼 = 𝛽𝛽 = 1. In other words, 
such an always attack is a kind of particular case of our proposed attack model. It should be 
noted that the MU can be regarded as the NU when 𝛼𝛼 = 𝛽𝛽 = 0 because it did not launch attack. 

According to the proposed dynamic Byzantine attack, a couple of flipping 
probabilities  𝛼𝛼 and 𝛽𝛽 can be expressed as 

 𝛼𝛼 = 𝑃𝑃(𝑅𝑅𝑖𝑖 = 1|𝑆𝑆𝑖𝑖 = 0)                                                         (6) 
𝛽𝛽 = 𝑃𝑃(𝑅𝑅𝑖𝑖 = 0|𝑆𝑆𝑖𝑖 = 1)                                                         (7) 

For the sake of simplicity, MUs are assumed to be independent of each other and have the 
same flipping probability, then the false alarm probability and the miss detection probability 
for a MU can be obtained as 

𝑃𝑃𝑓𝑓𝑚𝑚 = �1 − 𝑃𝑃𝑓𝑓�𝛼𝛼 + 𝑃𝑃𝑓𝑓(1 − 𝛽𝛽)                                                 (8) 
𝑃𝑃𝑚𝑚𝑚𝑚 = (1 − 𝑃𝑃𝑚𝑚)𝛽𝛽 + 𝑃𝑃𝑚𝑚(1− 𝛼𝛼)                                                (9) 

Taking Byzantine attack into consideration in CSS, the false alarm probability 𝑃𝑃𝑓𝑓𝑓𝑓 and the 
miss detection probability 𝑃𝑃𝑚𝑚𝑚𝑚 at the FC can be respectively expressed as 

𝑃𝑃𝑓𝑓𝑓𝑓 = 𝜌𝜌𝑃𝑃𝑓𝑓𝑚𝑚 + (1 − 𝜌𝜌)𝑃𝑃𝑓𝑓                                                   (10) 
𝑃𝑃𝑚𝑚𝑚𝑚 = 𝜌𝜌𝑃𝑃𝑚𝑚𝑚𝑚 + (1 − 𝜌𝜌)𝑃𝑃𝑚𝑚                                                  (11) 

where the detection probability 𝑃𝑃𝑑𝑑𝑑𝑑 = 1 − 𝑃𝑃𝑚𝑚𝑎𝑎. 
Different from that 𝛼𝛼 and 𝛽𝛽 are regarded as the false alarm attack and miss detection attack 

parameter and assumed to be the same in [10], the flipping probabilities 𝛼𝛼  and 𝛽𝛽  are 
independent of each other in this paper. To be specific, A. Sharifi and M. Niya treat the 
malicious percentage 𝜌𝜌 as the attack intensity in [29], obviously, the flipping probability is 
confused with the malicious percentage. In summary, unlike the existing attack model, our 
proposed dynamic Byzantine attack model does not have no any special assumption on attack 
parameters.  

2.3 Throughput Evaluation 

 
Fig. 3.  Periodic spectrum sensing frame structure of CRN. 

 
Next, we further introduce a periodic spectrum sensing frame structure to evaluate the 
achievable throughput of CRNs [30]. Each frame (the frame duration is 𝑇𝑇) consists of a sensing 
slot (the sensing time is 𝜏𝜏) and a data transmission slot (data transmission time is 𝑇𝑇 − 𝜏𝜏), as 
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shown in Fig. 3. Based on the spectrum sensing frame structure, a brief of some assumptions 
and parameters are provided to evaluate the throughput in the data transmission time. Let 𝐶𝐶0 
and 𝐶𝐶1 represent the average throughput of CRNs in the absence or presence of the PU [30], 
respectively, 𝑃𝑃𝑠𝑠 is the received power of SU, 𝑁𝑁0 is the noise power and 𝑃𝑃𝑝𝑝 is the interference 
power of PU measured at the SU, then [30] 

  𝐶𝐶0  = log2 �1 +
𝑃𝑃𝑠𝑠
𝑁𝑁0 

�                                                          (12) 

𝐶𝐶1 = log2 �1 +
𝑃𝑃𝑠𝑠

𝑃𝑃𝑝𝑝 + 𝑁𝑁0 �
                                               (13) 

In order to take the CSS performance into consideration, we further adopt the majority rule 
at the FC, which is based on the majority of the individual decisions [31]. Depending on the 
majority rule, then the global false alarm and detection probability can be given by [31][32] 

𝑄𝑄𝑓𝑓 = � �
𝑁𝑁
𝑛𝑛
�

𝑁𝑁

𝑛𝑛=𝐾𝐾

𝑃𝑃𝑓𝑓𝑓𝑓𝑛𝑛 �1− 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝑛𝑛                                            (14) 

𝑄𝑄𝑑𝑑 = � �
𝑁𝑁
𝑛𝑛
�

𝑁𝑁

𝑛𝑛=𝐾𝐾

𝑃𝑃𝑑𝑑𝑑𝑑𝑛𝑛 (1− 𝑃𝑃𝑑𝑑𝑑𝑑)𝑁𝑁−𝑛𝑛                                            (15) 

where the global miss detection portability 𝑄𝑄𝑚𝑚 = 1 − 𝑄𝑄𝑑𝑑. 
According to the global decision (the FC broadcasts that the PU is absent) made by the FC, 

there are following cases where SUs are allowed to access the channel. 
Case 1: when the FC correctly decides that the PU is absent, the SU is allowed to access the 

channel underutilized by the PU, then the average throughput of CRN for Case 1 can be 
expressed as 

𝑅𝑅0 =
𝑇𝑇 − 𝜏𝜏
𝑇𝑇

𝑃𝑃(𝐻𝐻0)�1− 𝑄𝑄𝑓𝑓�𝐶𝐶0                                                 (16) 
where 𝑃𝑃(𝐻𝐻0) represents the probability of hypothesis 𝐻𝐻0. 

Case 2: when the FC wrongly decides that the PU is absent, the miss detection occurs, 
according to the global decision, the SUs still access the channel being used by the PU but will 
cause the harmful interference to the PU, the average throughput of CRN for Case 2 is given 
by 

𝑅𝑅1 =
𝑇𝑇 − 𝜏𝜏
𝑇𝑇

𝑃𝑃(𝐻𝐻1)(1− 𝑄𝑄𝑑𝑑)𝐶𝐶1                                                  (17) 
where 𝑃𝑃(𝐻𝐻1) represents the probability of hypothesis 𝐻𝐻1. 

Through above analyses, the average throughput of CRN can be represented by 

𝑅𝑅 =
𝑇𝑇 − 𝜏𝜏
𝑇𝑇 �𝑃𝑃(𝐻𝐻0)(1− 𝑄𝑄𝑓𝑓)𝐶𝐶0 + 𝑃𝑃(𝐻𝐻1)(1− 𝑄𝑄𝑑𝑑)𝐶𝐶1�                               (18) 

Following the above description and analyses about CSS and Byzantine attack, we further 
provide a comprehensive investigation on the impact of Byzantine attack in the following 
section. 

3. Scenario I: Unknown Fusion Rule 
This section considers a scenario where the MU does not know the fusion rule adopted by the 
FC. Because of unknown fusion rule, the MU launches Byzantine attack but cannot obtain the 
global CSS performance. In view of this, we discuss Byzantine attack from the local spectrum 
sensing performance next. 
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MUs intend to destroy the operation of CR through Byzantine attack, in order to achieve 
this goal, MUs need to perform local spectrum sensing like other NUs, and then flip the 
original sensing decision and submit them to the FC, thereby misleading the FC to make wrong 
global decision regarding the PU’s status. If possible, MUs will make the FC completely 
unable to decide on the channel status, but this needs to make an in-depth analysis on 
characteristics of Byzantine attack. In fact, there are a number of different MU identification 
and mitigation algorithms methods to defend against Byzantine attack threats but fail in 
considering characteristics of Byzantine attack itself. For example, regardless of the defense 
strategy, to what extent can MUs degrade the performance of the FC, and what is the 
relationship between the attack ratio 𝜌𝜌 and the flipping probabilities 𝛼𝛼 and 𝛽𝛽? 

In order to solve above issues, we introduce a blind conception about the FC’s decision 
ability. In the view of the Bayesian framework, when the received decision does not provide 
any information about the hypotheses to the FC, we regard that the FC is blind at this time. 
That is to say, the global decision is completely independent of the hypothesis test. Meanwhile, 
it should be noted that the random guess of the FC can also have 50% accuracy, hence the 
condition to make the FC blind can be stated as 𝑃𝑃(𝑹𝑹|𝐻𝐻0) = 𝑃𝑃(𝑹𝑹|𝐻𝐻1)  where 𝑹𝑹 =
[𝑅𝑅1, . . . ,𝑅𝑅𝑖𝑖, . . . ,𝑅𝑅𝑁𝑁] . Assuming that each SU’s sensing observation is subject to conditional 
independent and identically distribution, then the blind condition of which MUs make the FC 
become 𝑃𝑃𝑓𝑓𝑓𝑓 = 𝑃𝑃𝑑𝑑𝑑𝑑. Therefore, we have 

𝜌𝜌𝑃𝑃𝑓𝑓𝑚𝑚 + (1 − 𝜌𝜌)𝑃𝑃𝑓𝑓  = 1 − 𝜌𝜌𝑃𝑃𝑚𝑚𝑚𝑚 − (1 − 𝜌𝜌)𝑃𝑃𝑚𝑚                                  (19) 
Hence, the FC becomes blind if 

𝜌𝜌 =
1

𝛼𝛼 + 𝛽𝛽
                                                               (20) 

To be specific, we can see from (20) that when MUs launch always false attack (i.e., 𝛼𝛼 =
𝛽𝛽 = 1), the minimum percentage of MUs to make the FC blind is 𝜌𝜌 = 0.5. Otherwise, when 
MUs only launch always yes attack (𝛼𝛼 = 1) or always no attack (𝛽𝛽 = 1), it is impossible to 
make the FC blind unless MUs are spread all over the network.  

The above blind condition is derived without defense strategies, but in front of defense 
strategies, MUs still can adjust their own attack strategies (the attack ratio and the flipping 
probability) to obtain attack benefit (i.e., exclusively occupying the channel or causing harmful 
interference to the PU) and ensure security [29]. For example, on the one hand, when the MU 
represents the minority, three kinds of always attack have been widely studied and easily 
identified. In fact, MUs should consider that the flipping probability is less than 1 (i.e., 𝛼𝛼 =
𝛽𝛽 = 0.5), then will not be eliminated because of aggressive attacks; On the other hand, when 
MUs are in the majority, most defense strategies cannot defend against such a large-scale 
Byzantine attack, therefore the flipping probability can be varied from 0 to 1. 

4. Scenario I I: Known Fusion Rule 

This section takes the scenario II where the MU knows the fusion rule adopted by the FC into 
account. According to the majority rule, MUs would want to deteriorate the CSS performance, 
thereby occupying spectrum resources or causing harmful interference to the PU. The 
malicious goal is to obtain the optimal attack strategy that maximizes the MU’s throughput 
and interference to the PU. 
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4.1 The SU’s Average Throughput 
Before proceeding with analyses on the MU’s average throughput and interference to PU, the 
SU’s average throughput of CRN is provided. Following (18) and the interweave CR 
framework, the average throughput for a SU is represented by 

𝑅𝑅𝑙𝑙 =
𝑇𝑇 − 𝜏𝜏
𝑇𝑇

1
𝑁𝑁 �

𝑃𝑃(𝐻𝐻0)(1− 𝑄𝑄𝑓𝑓)𝐶𝐶0 + 𝑃𝑃(𝐻𝐻1)(1− 𝑄𝑄𝑑𝑑)𝐶𝐶1�                            (21) 
When MUs intend to minimize 𝑅𝑅𝑙𝑙, then the minimization problem can be described as 

min
𝛼𝛼,𝛽𝛽

𝑇𝑇 − 𝜏𝜏
𝑇𝑇

1
𝑁𝑁 �

𝑃𝑃(𝐻𝐻0)(1 −𝑄𝑄𝑓𝑓)𝐶𝐶0 + 𝑃𝑃(𝐻𝐻1)(1− 𝑄𝑄𝑑𝑑)𝐶𝐶1�                             (22) 

For a fixed 𝛽𝛽, the partial derivative of 𝑅𝑅𝑙𝑙  with respect to 𝛼𝛼 can be obtained as 
𝜕𝜕𝑅𝑅𝑙𝑙(𝛼𝛼,𝛽𝛽)

𝜕𝜕𝜕𝜕
= −

𝑇𝑇 − 𝜏𝜏
𝑇𝑇

1
𝑁𝑁�

𝑃𝑃(𝐻𝐻0)𝐶𝐶0
𝜕𝜕𝑄𝑄𝑓𝑓
𝜕𝜕𝜕𝜕

+ 𝑃𝑃(𝐻𝐻1)𝐶𝐶1
𝜕𝜕𝑄𝑄𝑑𝑑
𝜕𝜕𝜕𝜕 �

                          (23) 

where 𝜕𝜕𝑄𝑄𝑓𝑓
𝜕𝜕𝜕𝜕

 and  𝜕𝜕𝑄𝑄𝑑𝑑
𝜕𝜕𝜕𝜕

 can be obtained by the following algebraic manipulations, 
𝜕𝜕𝑄𝑄𝑓𝑓
𝜕𝜕𝜕𝜕

= �𝑁𝑁𝐾𝐾��𝐾𝐾
𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾−1�1− 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾 − (𝑁𝑁 − 𝐾𝐾) ∙

𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾 �1 − 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾−1� 

+ � 𝑁𝑁
𝐾𝐾 + 1��(𝐾𝐾 + 1)

𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

 ∙ 𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾 �1 − 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾−1 − (𝑁𝑁 − 𝐾𝐾 − 1)

𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾+1       

∙ �1 − 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾−2�+ ⋯+ �𝑁𝑁𝑁𝑁��𝑁𝑁

𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝑁𝑁−1 − 0�                                                  

=
𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾−1�1− 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾 ���𝑁𝑁𝐾𝐾�𝐾𝐾 −

𝑃𝑃𝑓𝑓𝑓𝑓
1 − 𝑃𝑃𝑓𝑓𝑓𝑓

(𝑁𝑁 − 𝐾𝐾)� + � 𝑁𝑁
𝐾𝐾 + 1� 

∙ �(𝐾𝐾 + 1)
𝑃𝑃𝑓𝑓𝑓𝑓

1 − 𝑃𝑃𝑓𝑓𝑓𝑓
− (𝑁𝑁 − 𝐾𝐾 − 1)

𝑃𝑃𝑓𝑓𝑓𝑓2

�1 − 𝑃𝑃𝑓𝑓𝑓𝑓�
2��                                                       

=
𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾−1�1− 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾 ���𝑁𝑁𝐾𝐾�𝐾𝐾 −

𝑃𝑃𝑓𝑓𝑓𝑓
1 − 𝑃𝑃𝑓𝑓𝑓𝑓

(𝑁𝑁 − 𝐾𝐾)�                                           

+
𝑃𝑃𝑓𝑓𝑓𝑓

1 − 𝑃𝑃𝑓𝑓𝑓𝑓
� 𝑁𝑁
𝐾𝐾 + 1��(𝐾𝐾 + 1) − (𝑁𝑁 − 𝐾𝐾 − 1) ∙

𝑃𝑃𝑓𝑓𝑓𝑓
1 − 𝑃𝑃𝑓𝑓𝑓𝑓

+ ⋯�                         (24) 

Because of �𝑁𝑁𝐾𝐾�
𝐾𝐾
𝑁𝑁

= �𝑁𝑁−1𝐾𝐾−1�, then 
𝜕𝜕𝑄𝑄𝑓𝑓
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾−1�1 − 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾 ��𝑁𝑁𝐾𝐾�𝐾𝐾 + �−

𝑃𝑃𝑓𝑓𝑓𝑓
1 − 𝑃𝑃𝑓𝑓𝑓𝑓

�𝑁𝑁𝐾𝐾�  ∙ (𝑁𝑁 − 𝐾𝐾) 

+
𝑃𝑃𝑓𝑓𝑓𝑓

1 − 𝑃𝑃𝑓𝑓𝑓𝑓
� 𝑁𝑁
𝐾𝐾 + 1� (𝐾𝐾 + 1)� + ⋯�                                                                        

                              =
𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾−1�1− 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾 ��𝑁𝑁 − 1

𝐾𝐾 − 1�𝑁𝑁 +
𝑃𝑃𝑓𝑓𝑓𝑓

1 − 𝑃𝑃𝑓𝑓𝑓𝑓
�� 𝑁𝑁
𝐾𝐾 + 1� ∙ (𝐾𝐾 + 1) 

                                  −�𝑁𝑁𝐾𝐾� (𝑁𝑁 − 𝐾𝐾)� + ⋯� 

                              =
𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕 �1 − 𝑃𝑃𝑓𝑓𝑓𝑓�

𝑁𝑁−𝐾𝐾 ��𝑁𝑁 − 1
𝐾𝐾 − 1�𝑁𝑁 +

𝑃𝑃𝑓𝑓𝑓𝑓
1 − 𝑃𝑃𝑓𝑓𝑓𝑓

∗ 0� 

= 𝑁𝑁 �𝑁𝑁 − 1
𝐾𝐾 − 1�

𝜕𝜕𝑃𝑃𝑓𝑓𝑓𝑓
𝜕𝜕𝜕𝜕

𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾−1�1 − 𝑃𝑃𝑓𝑓𝑓𝑓�
𝑁𝑁−𝐾𝐾                                                            (25) 
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Similarly, we also have  𝜕𝜕𝑄𝑄𝑑𝑑
𝜕𝜕𝜕𝜕

= 𝑁𝑁 �𝑁𝑁 − 1
𝐾𝐾 − 1�

𝜕𝜕𝑃𝑃𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕

𝑃𝑃𝑑𝑑𝑑𝑑𝐾𝐾−1(1− 𝑃𝑃𝑑𝑑𝑑𝑑)𝑁𝑁−𝐾𝐾. 

Then, we have the following result 

𝜕𝜕𝑅𝑅𝑙𝑙(𝛼𝛼,𝛽𝛽)
𝜕𝜕𝜕𝜕

= −�𝑁𝑁 − 1
𝐾𝐾 − 1� 𝜌𝜌

𝑇𝑇 − 𝜏𝜏
𝑇𝑇

𝑃𝑃(𝐻𝐻1)𝐶𝐶1𝑃𝑃𝑚𝑚 (1− 𝑃𝑃𝑑𝑑𝑑𝑑)𝑁𝑁−𝐾𝐾 

∙ 𝑃𝑃𝑑𝑑𝑑𝑑𝐾𝐾−1 �
𝑃𝑃(𝐻𝐻0)𝐶𝐶0
𝑃𝑃(𝐻𝐻1)𝐶𝐶1

(1 − 𝑃𝑃𝑓𝑓)𝑃𝑃𝑓𝑓𝑓𝑓𝐾𝐾−1(1− 𝑃𝑃𝑓𝑓𝑓𝑓)𝑁𝑁−𝐾𝐾

𝑃𝑃𝑚𝑚𝑃𝑃𝑑𝑑𝑑𝑑𝐾𝐾−1(1− 𝑃𝑃𝑑𝑑𝑑𝑑)𝑁𝑁−𝐾𝐾
+ 1�             (26) 

By observing (26), we can easily get  𝜕𝜕𝑅𝑅𝑙𝑙(𝛼𝛼,𝛽𝛽)
𝜕𝜕𝜕𝜕

< 0. The proof of 𝜕𝜕𝑅𝑅𝑙𝑙(𝛼𝛼,𝛽𝛽)
𝜕𝜕𝛽𝛽

> 0 is similar to 

that of 𝜕𝜕𝑅𝑅𝑙𝑙(𝛼𝛼,𝛽𝛽)
𝜕𝜕𝜕𝜕

< 0. 
Therefore, it is concluded that the optimal attack strategy to minimize the SU’s average 

throughput is 𝛼𝛼 = 1, 𝛽𝛽 = 0. Since 𝐶𝐶0 > 𝐶𝐶1, 𝑅𝑅0 dominates the achievable throughput. 

4.2 The MU’s Average Throughput and Interference to the PU 
Now, the impact of Byzantine attack on benefit of the MU itself is an issue of our concern. 
From the MU’s perspective, there are two modes of Byzantine attack, such as, sleep mode and 
action model. In the sleep mode, the MU does not launch Byzantine attack, i.e., 𝛼𝛼 =  𝛽𝛽 = 0, 
but it detects the PU’s presence or absence by means of the local spectrum sensing technology 
as well as other NUs, and also obtains spectrum resources from it or causes certain interference 
to the PU. In the action mode, the MU launches Byzantine attack, with the aim of occupying 
more spectrum resources and causing excessive interference to the PU. 

Next, we further elaborate on how the MU achieves the average throughput and causes 
harmful interference to the PU from CSS process in the interweave CR system. A brief 
description of following situations about the MU’s average throughput and interference to the 
PU can be described as 

Situation 1: When the FC’s global decision is 1, the PU is also present, all SUs are not 
allowed to access the channel at the current frame. According to the principle of the interweave 
CR system, SUs have to sense the availability of another channel in the next sensing frame. 

Situation 2: When the FC’s global decision is 0, but in fact the PU is present and the FC 
still informs SUs to access the PU’s channel, thereby causing harmful interference to the 
normal activities of PU at this time. 

Situation 3: When the FC’s global decision is 1, and the PU is absent, then NUs have to 
switch to another channel and continue spectrum sensing in the next frame while MUs 
exclusively occupy the channel at the current frame. 

Situation 4: When the FC’s global decision is 0 and the PU is also absent, all SUs including 
MUs and NUs are allocated to spectrum resources being underutilized by the PU at the current 
frame. 

In front of the above four situations, the next question that arises is how to evaluate the 
MU’s average throughput and interference to the PU according to the interweave CR system 
model. In Situation 1, since the FC’s global decision 1 is consistent with the real status of the 
PU, neither NUs nor MUs can use the channel currently being used by the PU, nor can it cause 
interference to the PU. Hence, both the MU’s average throughput and interference to the PU 
are 0. 

In Situation 2, all SUs are announced that the channel can be accessed because the global 
decision is 0, but the PU is present. It is apparent that SU accessing the channel being used by 
the PU will cause harmful interference to the PU’s normal communication. In order to quantify 
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the interference to the PU, we use the average throughput expression to describe it as 

𝑅𝑅𝐼𝐼 =
𝑇𝑇 − 𝜏𝜏
𝑇𝑇

1
𝑁𝑁
𝑃𝑃(𝐻𝐻1)(1 −𝑄𝑄𝑑𝑑)𝐶𝐶1                                            (27) 

In this situation, all SUs access the channel without knowing the PU’s presence, (27) can 
also be regarded as the available throughput of each SU (assuming that each SU is evenly 
allocated throughput). But from the perspective of the interweave CR framework, this situation 
should be avoided because the interference to the PU must be constraint. Hence, from the 
malicious perspective, the average throughput under this situation is equivalent to the 
interference to the PU. 

In Situation 3, it should be noted that even if the MU does not launch Byzantine attack, the 
false alarm may occur at the FC because of the nature of wireless propagations, i.e., noise. 
Only because of Byzantine attacks, MUs have more opportunities to access the idle channel. 
Therefore, regardless of whether there is the Byzantine attack, MUs can exclusively occupy 
the idle channel of the current frame. Since the spectrum resource allocation problem is out of 
the scope of this work, we consider that 𝜌𝜌𝜌𝜌 MUs evenly allocate spectrum resource for the 
sake of simplicity, then the average throughput for each MU in this situation can be expressed 
as 

𝑅𝑅𝑚𝑚01 =
𝑇𝑇 − 𝜏𝜏
𝑇𝑇

1
𝜌𝜌𝜌𝜌

𝑃𝑃(𝐻𝐻0)𝑄𝑄𝑓𝑓𝐶𝐶0                                                (28) 

In Situation 4, since the FC correctly decides that the PU is absent, then both NUs and MUs 
will access the idle channel and equally allocate spectrum resources. Therefore, then the 
average throughput for each MU in the situation is given as 

𝑅𝑅𝑚𝑚00 =
𝑇𝑇 − 𝜏𝜏
𝑇𝑇

1
𝑁𝑁
𝑃𝑃(𝐻𝐻0)�1 −𝑄𝑄𝑓𝑓�𝐶𝐶0                                          (29) 

Through above analyses of the MU’s average throughput and interference to the PU, then 
the throughput sum 𝑅𝑅𝑚𝑚 can be obtained by 

𝑅𝑅𝑚𝑚 = 𝑅𝑅𝑚𝑚01 + 𝑅𝑅𝑚𝑚00                                                        (30) 
For a MU, the final goal is to maximize the interference to the PU 𝑅𝑅𝐼𝐼 and the throughput 

𝑅𝑅𝑚𝑚. Apparently, the smaller the detection probability 𝑄𝑄𝑑𝑑, the greater 𝑅𝑅𝐼𝐼, in other words, the 
flipping probability 𝛼𝛼  has noting to do with 𝑅𝑅𝐼𝐼  and only 𝛽𝛽 = 1  makes 𝑅𝑅𝐼𝐼  maximize. As for 
𝑅𝑅𝑚𝑚, we take the partial derivative of 𝑅𝑅𝑚𝑚 with respect to 𝛼𝛼 and 𝛽𝛽. 

For a fixed 𝛽𝛽 , we have the partial derivative of 𝑅𝑅𝑚𝑚  with respect to 𝛼𝛼  by some simple 
algebraic manipulations 

𝜕𝜕𝑅𝑅𝑚𝑚
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑅𝑅𝑚𝑚01

𝜕𝜕𝜕𝜕
+
𝜕𝜕𝑅𝑅𝑚𝑚00

𝜕𝜕𝜕𝜕
=
𝑇𝑇 − 𝜏𝜏
𝑇𝑇

1
𝑁𝑁
�

1
𝜌𝜌
− 1� 𝑃𝑃(𝐻𝐻0)

𝜕𝜕𝑄𝑄𝑓𝑓
𝜕𝜕𝜕𝜕

                          (31) 

Similar to (31), for a fixed 𝛼𝛼, we have the partial derivative of 𝑅𝑅𝑚𝑚 with respect to 𝛽𝛽 is 
𝜕𝜕𝑅𝑅𝑚𝑚
𝜕𝜕𝛽𝛽

=
𝑇𝑇 − 𝜏𝜏
𝑇𝑇

1
𝑁𝑁
�

1
𝜌𝜌
− 1� 𝑃𝑃(𝐻𝐻0)

𝜕𝜕𝑄𝑄𝑓𝑓
𝜕𝜕𝛽𝛽

                                              (32) 

Since 𝜌𝜌 ∈ [0,1], it is easy to obtain 𝜕𝜕𝑅𝑅𝑚𝑚
𝜕𝜕𝜕𝜕

> 0 and 𝜕𝜕𝑅𝑅𝑚𝑚
𝜕𝜕𝛽𝛽

< 0, then it is can be concluded that 
the optimal attack strategy to maximize the MU’s average throughput is 𝛼𝛼 = 1, 𝛽𝛽 = 0. This 
conclusion we have obtained through mathematical analysis are consistent with intuitive 
feelings. These analyses laid the groundwork and guidance for the future analysis of MUs' 
optimal attack strategy under a defense mechanism. 
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5. SIMULATION RESULTS 

In the section, we provide a series of numerical simulation results to corroborate the 
concreteness and effectiveness of our theoretical analysis on the achievable throughput and 
interference to the PU from the MU’s perspective. Unless otherwise specified, the values of 
important simulation parameters are shown in Table 1. 

 
Table 1. Simulation parameters 

Parameters Symbol Value 
Number of SUs 𝑁𝑁 20 
Percentage of MUs 𝜌𝜌   0.4 

Local spectrum sensing performance 
𝑃𝑃𝑓𝑓 0.2 
𝑃𝑃𝑑𝑑 0.8 

Frame duration 𝑇𝑇 20ms 
Sensing duration 𝜏𝜏 1ms 

Probability of the hypotheses 𝐻𝐻0 and 𝐻𝐻1 𝑃𝑃(𝐻𝐻0) 0.8 
𝑃𝑃(𝐻𝐻1) 0.2 

Sampling frequency 𝑓𝑓𝑠𝑠 6MHz 
SNR for secondary transmission 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 20dB 
SNR for primary transmission 𝑆𝑆𝑆𝑆𝑆𝑆𝑃𝑃 -15dB 
 
As shown in Fig. 4, we display the impact of Byzantine attack on the achievable throughput 

𝑅𝑅𝑙𝑙  under various flipping probabilities. It can be seen that there is a negative correlation 
between the SU’s average throughput and 𝛼𝛼 , and a positive correlation between the SU’s 
average throughput and 𝛽𝛽. Therefore, as expected, the optimal attack strategy to minimize the 
SU’s average throughput is 𝛼𝛼 = 1, 𝛽𝛽 = 0 from the malicious perspective. 

 

 
Fig. 4. The SU’s average throughput of CRNs v. s. the flipping probability. 
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Fig. 5.  The interference to the PU v. s. the flipping probability. 
 
 

Since the FC incorrectly declares that the PU is absent but in fact present, SUs still access 
to the channel being used by the PU according to the FC’s decision, thereby causing excessive 
interference to the PU’s normal communication. Fig. 5 illustrates the impact of Byzantine 
attack on the interference to the PU 𝑅𝑅𝐼𝐼 under various flipping probabilities. It is apparent that 
the flipping probability 𝛽𝛽 has a negative impact on 𝑅𝑅𝐼𝐼 while the flipping probability 𝛼𝛼 has a 
positive impact on it. Since the interference to the PU is determined by the global miss 
detection probability, that is, the larger 𝑄𝑄𝑚𝑚, the larger 𝑅𝑅𝐼𝐼.  According to (9), we know that the 
flipping probability 𝛽𝛽 is larger, the miss detection probability of a MU is larger, while the 
flipping probability 𝛼𝛼 is smaller the miss detection probability of a MU is smaller. Hence, we 
can see from Fig. 5 that 𝛼𝛼  increases 𝑅𝑅𝐼𝐼  for a fixed 𝛽𝛽  while 𝛽𝛽  decreases 𝑅𝑅𝐼𝐼  for a fixed 𝛼𝛼 .  
Therefore, MUs can maximize the interference to the PU when 𝛼𝛼 = 0, 𝛽𝛽 = 1. 

Next, the MU’s average throughput 𝑅𝑅𝑚𝑚01 and 𝑅𝑅𝑚𝑚00 under Situation 3 and 4 are compared 
in Fig. 6. In Situation 3, an increasing 𝛼𝛼 improves 𝑅𝑅𝑚𝑚01 for a fixed 𝛽𝛽 while an increasing 𝛽𝛽 
decreases 𝑅𝑅𝑚𝑚01 for a fixed 𝛼𝛼. It is worth noting that though a pair of the flipping probabilities 
have a positive and negative impact on 𝑅𝑅𝑚𝑚01, it is apparent that the effect of 𝛼𝛼 on 𝑅𝑅𝑚𝑚01 growth 
rate is greater than 𝛽𝛽. Especially, when 𝛼𝛼 ≤ 0.2𝛽𝛽, 𝑅𝑅𝑚𝑚01 = 0. This demonstrates that a small 
𝛼𝛼 has little impact on 𝑅𝑅𝑚𝑚01 because of cooperative gain. In contrast to simulation results of 
𝑅𝑅𝑚𝑚01, an increasing 𝛼𝛼 decreases 𝑅𝑅𝑚𝑚01 for a fixed 𝛽𝛽 while an increasing 𝛽𝛽 improves 𝑅𝑅𝑚𝑚00 for 
a fixed 𝛼𝛼  in Situation 4. To be specific, 𝑅𝑅𝑚𝑚00  keeps in 0.256 when 𝛼𝛼 ≤ 0.2𝛽𝛽 , but 𝑅𝑅𝑚𝑚00 
gradually decreases as 𝛼𝛼 and 𝛽𝛽 further increases or decreases respectively. 
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Fig. 6. The MU’s average throughput v. s. the flipping probability. 
 
 

In summary, the optimal attack strategy is 𝛼𝛼 = 1, 𝛽𝛽 = 0  in Situation 3 and 𝛼𝛼 = 0, 𝛽𝛽 = 1 
in Situation 4. Comparing with the interference to the PU in Situation 2 and the relatively 
low throughput in Situation 4, MUs can exclusively occupy the idle channel in Situation 3, 
it is inspiring for MUs to launch Byzantine attack, and especially explore the secondary usage 
for that frequency band by increasing the flipping probability 𝛼𝛼. From Fig. 6 and Fig. 7, the 
changing trend of the total throughput 𝑅𝑅𝑚𝑚 following the flipping probability is similar to that 
of 𝑅𝑅𝑚𝑚01, apparently, (26) dominates the MU’s throughput. 

The previous series of simulation results on the MU’s average throughput and the 
interference to the PU are only presented in a scenario where there are fewer MUs. Below we 
will further consider the MU’s average throughput when MUs represents the majority, i.e., 
𝜌𝜌 = 0.8, as shown in Fig. 8. At this time, the malicious ratio and the flipping probability satisfy 
𝜌𝜌 ≥ 1 (𝛼𝛼 + 𝛽𝛽)⁄ , the MU’s average throughput 𝑅𝑅𝑚𝑚 remains the same, that is, MUs completely 
make the FC blind. However, the blind scenario does not increase the MU’s throughput, but 
reduces it. This is because the FC’s global decision is still reliable in the non-blind scenario, 
each MU also occupies more spectrum resources according to the global decision. In the blind 
scenario, on the one hand, the increase in the number of MUs reduces the average throughput, 
on the other hand, MUs still decide whether to access the channel based on the unreliable 
global decision, the gains outweigh the losses. 
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Fig. 7.  The MU’s average throughput when 𝜌𝜌 = 0.4. 

 
Fig. 8.  The MU’s average throughput when 𝜌𝜌 = 0.8. 

6. Conclusions and Further Work 
In this paper, we established a dynamic Byzantine attack model in an interweave CR system 
from a malicious perspective, which can conduct various Byzantine attack by design different 
malicious ratios and flipping probabilities, and further derive the condition of which MUs 
make the FC blind. Then, we theoretically analyze the optimal attack strategy under two 
scenarios where MUs know that the FC adopts the fusion rule, with aim to minimize other 
SU’s average throughput and maximize their own average throughput and the interference to 
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the PU. Finally, a series of numerical simulation results are presented to verify the correctness 
and effectiveness of our theoretical analysis on Byzantine attack.  

Our work is different from most existing works in that we provide recent advances and open 
research directions on applying the FC and Byzantine attack in various scenarios and cases, 
focusing on the optimal attack strategy as well as the optimal defense strategy for CSS. In the 
follow-up work, we will consider the wise MU's optimal attack strategy when FC adopts a 
defense mechanism. This is an interesting problem worth exploring in the future. At the same 
time, these preliminary works pave the way for the follow-up robust defense strategy. 
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