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Abstract 

 
As a preprocessing operation of transmitter antennas, the hybrid precoding is restricted by the 
limited computing resources of the transmitter. Therefore, this paper proposes a novel hybrid 
precoding that guarantees the communication efficiency with low complexity and a fast 
computational speed. First, the analog and digital precoding matrix is derived from the 
maximum eigenvectors of the channel matrix in the sub-connected architecture to maximize 
the communication rate. Second, the extended power iteration (EPI) is utilized to obtain the 
maximum eigenvalues and their eigenvectors of the channel matrix, which reduces the 
computational complexity caused by the singular value decomposition (SVD). Third, the 
Aitken acceleration method is utilized to further improve the convergence rate of the EPI 
algorithm. Finally, the hybrid precoding based on the EPI method and the Aitken acceleration 
algorithm is evaluated in millimeter-wave (mmWave) massive multiple-input and multiple-
output (MIMO) systems. The experimental results show that the proposed method can reduce 
the computational complexity with the high performance in mmWave massive MIMO systems. 
The method has the wide application prospect in future wireless communication systems. 
 
 
Keywords: Power iteration, Aitken acceleration, extended power iteration, hybrid 
precoding, millimeter wave, massive MIMO systems. 
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1. INTRODUCTION  

As the key technology of fifth generation mobile communication (5G), the massive multiple-
input and multiple-output (MIMO) systems have hundreds of antennas to improve the spectral 
efficiency [1][2]. The millimeter wave (mmWave) ensures the feasibility of the massive 
MIMO systems in practical communication systems. Due to the limited wavelength of the 
millimeter waves, the Antenna in Package (AIP) technology can integrate hundreds or even 
thousands of system antennas into smaller chips or circuit boards [3]. Therefore, the 
combination of mmWave and massive MIMO systems is a promising technology. 
   In mmWave massive MIMO systems, the precoding technology is used to enhance the 
strength of the desired directional signal through the spatial processing to increase the system 
capacity [4]. The precoding technology adjusts the phase or amplitude of each element in the 
antenna array to obtain high transmission efficiency. However, the transmitter antennas of 
mmWave massive MIMO systems require many RF chains [5][6], which greatly increases the 
system complexity and the power consumption cost of the equipment [7][8]. Therefore, the 
hybrid precoding technology is the main solution in mmWave massive MIMO systems. 

Based on the connection method, the hybrid precoding technology has three main categories. 
The first one is the fully-connected architectures-based hybrid precoding [9-13], and many 
scholars have made some researches about it. Such as, Ayach proposed sparse precoding, 
which transforms the achievable rate optimization problem into a sparse approximation 
problem and solves it by the matching pursuit algorithm, and its computation complexity is 
high [9]. Wonil et al. exploited codebooks to optimize the hybrid precoding by an iterative 
algorithm. The fully-connected architecture leads to a high computational complexity for 
iterative algorithms [10]. An alternative minimization algorithm based on the manifold 
optimization was introduced in [11]. The algorithm has the approximately optimal 
performances, but due to the manifold optimization, the digital and analog precoding matrixes 
are updated iteratively, so the computation complexity is still very high. All designed 
precoding for hybrid precoding employ a fully-connected architecture causing three additional 
limitations: 1) more phase shifters are required; 2) more energy is required to compensate for 
the energy consumption of the phase shifters; and 3) the computational complexity is higher, 
which leads to more energy consumption [9-14].  

The second one is the sub-connected architecture-based hybrid precoding [15-16]. The each 
radio frequency (RF) chain is fixed to a certain portion of the antennas and can consume less 
power than the fully-connected structure. The successive interference cancelation (SIC) 
precoding has been proposed in sub-connected architectures [15]. The hybrid precoding 
optimization problem with non-convex constraints is transferred into a series of simple sub-
antenna array optimization problems, each of which only considers one sub antenna array. 
However, the SIC precoding is a local-optimum for the sub-antenna array. The transmission 
efficiency is very limited. The hybrid precoding based on the alternating minimization 
algorithm has the similar drawback [16]. A hybrid precoding algorithm based on particle 
swarm optimization (PSO) has been introduced. The hybrid precoding uses the PSO algorithm 
to search the elements in the analog precoding matrix column by column. However, the 
method reduces the system performance to some extent [17]. Maximizing the spectral 
efficiency of the system is regarded as the objective function under the sub-connected 
architecture, and the optimization process of the analog precoding and the digital precoding 
are separated in two stages. However, the performance is still low [17-19]. Thus, the main 
concern of the sub-connected architecture is to improve the transmission performance. 

The last one is the adaptive-connected structures-based hybrid precoding [20]. The 
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adaptive-connected structure exploits antenna-selected technology to connect subset RF 
chains, which can consume less power. Some studies have exploited the dynamic connection 
technology to select RF chain and antenna arrays [21-24]. [23-25] proposed the hybrid 
precoding based on a sub-connected architecture, which uses a dynamic connection algorithm 
to select sub-arrays. The adaptive-connected structure can provide a trade-off between the 
transmission speed and the power consumption by additional switched and antenna selection 
algorithms, which require more system resources. In addition, some previous studies on the 
hybrid precoding only investigated how to maximize the spectral efficiency. However, the 
computational complexity is the key in the hybrid precoding of the wireless communication 
systems, especially in 5G systems. 

To address the problems of high complexity and limited performance, a sub-connected 
architecture with the low complexity hybrid precoding is proposed in this paper. To obtain 
well transmission performance and avoid the local optimization problem, the extended power 
iteration (EPI) method is utilized to calculate the maximum eigenvalues and their eigenvectors 
of the channel matrix. The eigenvectors of the EPI method are used to obtain the hybrid 
precoding matrix with low computation complexity. The contributions of this paper can be 
summarized as follows. 

1) The EPI method is proposed to calculate the maximum eigenvalues and their eigenvectors. 
The power iteration (PI) is used to calculate the maximum eigenvalue and its eigenvectors of 
the channel matrix. Then the deflation method is used to obtain the maximum eigenvalues and 
their eigenvectors. Based on the EPI method, the calculation speed of the hybrid precoding is 
improved. 

2) The Aitken method is used to accelerate the convergence of the EPI method. When the 
maximum eigenvalue is close to the second eigenvalue, the convergence is very slow. 
Therefore, the Aitken method is used to solve this problem. Additionally, the Aitken method 
can increase the convergence speed of the EPI method. 

3) Experimental results obtained with the proposed precoding are given for mmWave 
massive MIMO systems. The results show that the hybrid precoding based on the EPI method 
and the Aitken method has low complexity and a faster calculation speed than other methods. 

The remainder of this paper is organized as follows. Section 2 briefly describes the 
mathematical model of mmWave massive MIMO systems. In Section 3, the hybrid precoding 
based on the EPI method is introduced in detail. The experimental results are provided in 
Section 4. The conclusions are given in Section 5. 

2. MATHEMATICAL MODEL OF HYBRID PRECODING FOR MMWAVE 
MASSIVE MIMO 

2.1 System Model  
A sub-connected point-to-point architecture mmWave MIMO systems including one base 
station (BS) with RFMN  antennas transmits N  data streams to receivers with K  antennas are 
considered in our paper, as shown in Fig. 1. [8]. The BS has RFN  RF chains and 

RF RFN N K MN≤ < < . Therefore the hybrid precoding is divided into two parts: a RF RFN N×  
baseband precoder BBF  using N  transmit chains and an RF RFMN N×  RF precoder RFF  using 

analog circuits. When we transmit N data streams, the vectors ( )RFN N−f  and ( )RF

B
N Nf −  are zero 

vectors. Thus, the received signal can be modelled as 
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Fig. 1. Sub-connected architecture for mmWave massive MIMO systems. 
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where RFK MN×∈H £  is the matrix of the complex channel gain; s  is a 1N ×  symbol vector with

[ ]=H
N NΕ ss I , ( ) ( )1 2 1 2[ , ,..., , ] [ , ,..., , ]

RF RF

B B B B
RF BB N NN N N Ndiag diag f f f f− −= = ⋅F F F f f f f  is a 

RFMN N×  transmit hybrid precoding matrix in the sub-connected architecture; and RFF  is an 
analog precoding matrix, which controls the direction of the transmitter antennas. BBF  is the 
digital precoding, which controls the power of the transmitting antenna. n is the additive white 
Gaussian noise and 2

F
Pγ = F is a scaling factor to satisfy the transmitting power constraint. 

Compared to the fully-connected architecture with 2
RFMN  phase shifters (PS), the sub-

connection architecture requires RFMN  PSs. 
In our system model, the extended Saleh Valenzuela cluster channel model is utilized to 

describe the mmWave channel characteristics [26-28]. In this channel model, the channel 
matrix H is assumed to be the sum of the contributions of L scattering clusters. Therefore, the 
channel matrix can be written as  

1
( , ) ( , ) ( , ) ( , )

L
r r t t r r t tRF

l r l l t l l r l l t l l
l

MN K
L

α φ θ φ θ φ θ φ θ
=

= Λ Λ∑H a a      (4) 

where lα  denotes the complex gain of the lth path; ( , )r r
r l lφ θΛ and ( , )t t

t l lφ θΛ  denote the 
antenna element gain for the arrival and departure angles, respectively [26]; and tφ ( rφ ) and tθ  
( rθ ) denote the azimuth and elevation departure angles (arrival), respectively. ( , )r r

r l lφ θa  and 
( , )t t

t l lφ θa  represent the receiving and transmitting antenna array response vectors, 
respectively. 

The function of the antenna element gain ( , )φ θΛ  can be expressed as follows: 

[ ] [ ]min max min max1  , , ,
( , )

0                   otherwise
φ φ φ θ θ θ

φ θ
 ∀ ∈ ∀ ∈

Λ = 


                                  (5) 
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where [ ]min max,φ φ  denote the maximum and minimum azimuth angles of the receiving and 
transmitting antennas respectively. [ ]min max,θ θ  denote the maximum and minimum elevation 
angles, respectively. 

For the array response vector (ARV), the two commonly-used antenna arrays are expressed 
as follows: 

For the uniform linear array (ULA), the ARV with M elements is given by 
2 2sin( ) ( 1) sin( )1( ) [1, ,..., ]

j d j M d

ULA e e
M

π πφ φ
λ λφ

−
=a                                 (6) 

In practical systems, the azimuth angle is quantized as an array antenna as follows: 

max min max min max min
min min max, 2 ,...,

Q Q Q
φ φ φ φ φ φ

φ φ φ φ
 − − −

= + + − 
 

          (7) 

where Q denotes the number of phase shifter quantization levels.  
For a uniform planar array (UPA) with 1W  and 2W  elements on horizon and vertical, 

respectively, the ARV is expressed as follows: 
( ) ( )1 2 1 2

2 2sin( )sin( ) cos( ) ( 1)sin( )sin( ) ( 1)cos( )

1 2

1( , ) 1, ,...,
j d w w j d W W

UPA e e
WW

π πφ θ θ φ θ θ
λ λφ θ

+ − + − 
=  

 
a  (8) 

where 1 10 w W≤ ≤ , 2 20 w W≤ ≤ . ( , )φ θ  is quantized as follows: 

max min max min max min
min min max

1 1 1

, 2 ,...,
Q Q Q

φ φ φ φ φ φ
φ φ φ φ

 − − −
= + + − 
 

                (7) 

   max min max min max min
min min max

2 2 2

, 2 ,...,
Q Q Q

θ θ θ θ θ θ
θ θ φ θ

 − − −
= + + − 
 

             (10) 

where Q1 and Q2 denote the number of phase shifter quantization levels. 

2.2 Hybrid Precoding Design 
We consider the design of the hybrid precoding for point-to-point mmWave massive MIMO 
systems. For the sub-connected architecture, the achievable rate can be expressed as follows:  

2log H H H
RF BB BB RFR

N
γ 

= + × 
 

I HF F F F H               (11). 

To obtain the maximum achievable rate, ,RF BBF F  are designed under the following 
constraints: 
A) The total transmit power constraint should satisfy RF BB N≤F F  
B)  The PS requires that the analogy vectors have the same amplitude: i ∈f A .  
where 1 1 2 2[ ( , ), ( , ),..., ( , ), ( , )]i i L Lφ θ φ θ φ θ φ θ=A a a a a  ， ( , )i iφ θa  is an 1M ×  ARV, and all 
ARVs are set as a similar matrix for every RF chain.  

However, the non-convex constraints on RF BBF F  to maximize the achievable rates are 
complicated. Therefore, in some studies, the achievable rate has been maximized by reducing 
the “distance” between RF BBF F  and the optimal unconstrained precoding matrix. For hybrid 
architectures, many studies have proved that the design of the analog precoding matrix and the 
digital precoding matrix is developed from the optimal unconstrained precoding matrix by 
using sparse signal processing techniques. Ayach proved that the right-singular vectors of the 
channel are the optimal unconstrained vectors due to the anti-interference ability of SVD 
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precoding [9], which inspired us to make RF BBF F  approach the digital SVD precoding matrix 
in a sub-connected architecture. The optimal unconstrained precoding matrix can divide the 
channel into an independent channel to reduce the interference between the transmit antennas. 
In real mmWave communication ( RF RFN N MN≤ ≤ ), when we transmit N  data streams by 
N  RF-chain, the hybrid precoding design can be decomposed as follows: 

H=H UΣV                                                  (12) 

1

2

0
0

 
=  
 

Σ
Σ

Σ
, 1 2[ , ]=V V V                                     (13) 

where 1Σ is N N×  and 1 1 2[ , ,... ,... ]i N=V v v v v . 
Due to the special sub-connected architecture and the independence of the vectors in 1V , 

we can split the right-singular matrix 1V  into N vectors. Then we exploit the N RF chain and 
N antenna sub-arrays to approach the independence vector iv  from 1V . 

When B
i if f  is close to iv ,  
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v f
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     (14) 

Because iv  is a unitary matrix and if  has the same power allocation, we obtain ,RF BBF F  

1
1 angle( )i j
M

=f v     (15) 

iB
if M
=

v .      (16) 

In practical systems, the ARV is quantized. Therefore, the elements of RFF  are derived from 
A ; thus,  

( )

( )arg max angle( )angle( )
m

m
i i

∈
=

a A
f v a    (17) 

From (13), (16), and (17), the new hybrid precoding must calculate the N largest eigenvalues 
and their eigenvectors. It is necessary to design ,RF BBF F . In addition, the rank of the mmWave 
channel is equal to that of L scattering clusters; if L < N, we can only transmit L data streams 
to ensure that the independent eigenvectors guarantee the communication performance. It 
should be noted that the complexity of SVD procedures is substantial when MNRF is large, and 
so only the N largest eigenvalues and their eigenvectors are used. Therefore, a low computation 
complexity method is used to solve these constraints. 

3. EXTENDED POWER ITERATION PRECODING 
To avoid the SVD procedure, we must identify an approximation method to obtain the N 
largest eigenvalues and their eigenvectors of the channel matrix. This paper proposes a novel 
EPI method to solve this problem. Before the EPI method, the PI method is given as follows. 
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3.1 Power Iteration Method 

Let n n×∈A £ be a matrix with eigenvalues [29][30]: 

1 2 ... nλ λ λ> ≥ ≥     (18) 

where 1λ is a maximum eigenvalue, then we assume that A has a set of independent 

eigenvectors 2, ,..., n1x x x  of unit length associated with the eigenvalue. 
Assume an initial vector 0 =p p . The power method forms the sequence of vectors 1 =p Ap ,

2
2 =p A p ,…, and the recursion can be expressed as follows: 

2 3
1 2 3 0

k
k k k k− − −= = = =p Ap A p A p A p     (19) 

Then, by expanding the initial vector along the eigenvectors 0 1

n
j jj

α
=
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that 1 0α ≠ , we obtain kp  for 1,2,3,...k = . 
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1 1 1
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k
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  
 = +     

 
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∑

∑
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x

   (20) 

In practice, the l2-norm of 0p  is set as 1 to avoid overflow or underflow, and the initial 
recursion is modified as follows: 

1

max( ), 1,2,3...
k k

k k

k k k

m k
m

−=
 = =
 =

p Av
p

p p

)
)

)
                            (21) 

Due to 
1 2λ λ> , when k →∞ ,  

1

1

k

k

mλ ≈
 ≈x p

                                                        (22) 

The PI method yields the maximum singular value 1λ  and the first right eigenvectors 1x  
by using (22). However, this PI method computes only the largest eigenvalue and its 
corresponding eigenvector. Moreover, the sparse precoding needs the N largest eigenvalues 
and their eigenvectors. Therefore, the EPI method is proposed to calculate the maximum N 
eigenvalues and their eigenvectors. 

3.2 Hybrid Precoding Based on the EPI Method 
Because PI only can calculate the maximum value, it is difficult to meet the hybrid precoding 
requirements. Therefore, we derive the EPI method from the PI method by using the deflation 
method. Based on the PI method, we delete the maximum eigenvalues and their eigenvectors 
from the matrix through the deflation method. Then, we obtain new sets of maximum 
eigenvalues and their eigenvectors from the new matrix. The EPI method for the channel 
matrix is presented as follows: 

Step 1: Calculate the first maximum eigenvalue and eigenvector of ( )iH as follows: 
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( -1) ( ) ( 1)n i n−=z H u                                                     (23) 
( -1) ( -1)arg maxn n

izλ =                                            (24) 
( -1)

( )
( -1) ,
n

n
n n n

λ
′= <

zu                                                  (25) 

Step 2: Deflate the channel matrix ( )iH by the deflation method: 

( )
( )

( 1) ( ) ( ) ( )
2( )

2

n Ti i n ni
i in

i

λ+ = −H H u u
u

.                           (26) 

When a new matrix ( 1)i+H  is obtained, skip back to step 1. The eigenvalue and eigenvector 
of ( 1)i+H are calculated using (24) and (26). The proofs of the deflation method in (26) are 
presented in the APPENDIX I. 

3.3 EPI Method Optimization Based on the Aitken Method 
Based on (20), although the EPI method is convergent, its convergence rate may be slow when 

1 2λ λ≈ . Therefore, the Aitken method [31][32] is used to accelerate the convergence rate. We 
can describe the overall procedure of the Aitken iterations as follows: 

(1) 1 ( )k kx xϕ+ =)
                                                (27) 

(2) 1 1( )k kx xϕ+ +≈ )%                                                (28) 

(3) ( )2
1 1

1
1 12
k k k

k
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x x x
x

x x x
+ +

+
+ +

−
≈

− +

)%
)%

                                 (29) 

The geometric interpretation of the Aitken acceleration method is shown in Fig. 2. Suppose 
that 0x  is an approximate root of equation ( )y g x= , where (1)

1 0( )x g x= , (2) (1)
1 1( )x g x= . The 

point pair can give (1)
0 0 1( , )P x x  and (1) (2)

1 1 1( , )P x x , and the cross point of the chain 0 1P P  and 
function y x=  is 1x , which comes from the Aitken method. The proofs of the Aitken method 
are presented in APPRODIX II. 

By the Aitken method, the (24) can be transformed to 
( ) ( )

( ) ( 2) ( 1) 2

( ) ( 1) ( 2)
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n n
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Fig. 2. Geometric interpretation of the Aitken method. 
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Fig. 3. A block diagram of EPI hybrid precoding 

3.4 Procedure of Hybrid Precoding Based on EPI Method 
Through N iterations, we can obtain the largest eigenvalue and the corresponding eigenvector 
of the channel matrix H , BBF  and RFF  are accepted from the EPI method. Those specific steps 
in the EPI method are as follows in Algorithm 1 and Fig. 3. 
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3.5 Complexity Analysis 
In this section, we compare the computational complexity of the SVD, the EPI, the dynamic 
sub-array (DS)[23], and the sparse precoding. The number of floating point operations (flops) 
needed to implement these complex operations varies greatly according to the used hardware 
and the complex number representation [33]. Our EPI precoding needs to compute the optimal 
victors ( )nu  through the EPI method according to [31]. The matrix multiplication operation 
of ( ) ( ) ( 1)n i n−=z H u  and the Aitken method is ( )RFO MN K . In addition, the division operation 
of the EPI method is ( )2 2O n′ −  . Therefore, the total operation of the EPI method is 

( )( ) 2RFO NN MKn O n N′ ′+ . the SVD and the DS precoding have similar computation 
complexity, i.e., 3(( ) )RFO N M . The computation complexity of the sparse precoding method is 

4 2 2 2 2( )RF RF RFO N M N L N M L+ + . All hybrid precoding complexities are shown in Table 1. 
In mmWave systems, the number of iterations n and the number of RF chains N  are less 

than NM , M , and L. and the number of BS antennas NM  is far larger than the other 
parameters. The critical parameter in the sparse precoding complexity is NM . Therefore, the 
SVD of the sparse precoding is the main contributor to the computational complexity. As 
shown in Fig. 4, the complexity of the EPI method is lower than that of the sparse precoding. 

Table 1. Complexity of five hybrid precoding in mmWave massive MIMO systems 
Precoding Algorithm Complexity 

Sparse[9] 4 2 2 2 2( )RF RF RFO N M N L N M L+ +  
EPI ( )RFO NN MKn′  

SIC[15] 2( ( ))RFO M N n K′ +  
DS[23] 3 3( )RFO N M  
SVD 3 3( )RFO N M  

 

 
Fig. 4. The complexity comparisons of sparse, EPI, and SIC precoding for a (L = 32, n=5) mmWave 
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Fig. 4 shows the complexity of antennas per RF chain and RF chains for mmWave MIMO 

systems, considering mmWave massive MIMO systems with L=32, n′ =5, K=16, and NRF=16. 
Based on Fig. 4, the SIC precoding has the lowest complexity, but the lowest achievable rate 
cannot satisfy the communication requirement. The EPI precoding has a lower complexity 
than the sparse precoding. The precoding complexity has a light relationship with M; the main 
complexity is determined by the number of data streams N. In other words, when we increase 
the number of antennas per RF chain, the computation complexity has limited influence, but 
it can improve the achievable rate. 

4. SIMULATION AND ANALYSIS 
To demonstrate the performance of the hybrid precoding, we consider the classical mmWave 
massive MIMO systems. We use the software defined ratio (SDR), the channel emulation (CE), 
and the upconverter for our simulation experiment. The CE is used to generate real 
communication channel information with 8 XILINX KINTEX7 FPGAs; the modulation and 
the EPI precoding are deployed in the SDR systems. The data stream is upconverted into CE, 
and all experimental data is analyzed in MATLAB 2014a on a personal computer with 3.3 
GHz quad-core processor with 16 GB of RAM. The simulation parameters are shown in Table 
2. The ULA is used for simulation with the angle of departure (AoD) randomly distributes in 
[ ]6, 6π π−  and the direction of departure (DoD) randomly distributes in [ ],π π− . Therefore, 
we obtaine the ARV from (5).  

Table 2. The experiment simulation parameter 
Simulation parameters Number 

Effective channel paths L 32 
Carrier frequency 28GHz 

PI iteration  5 
Antennas per RF chain [16:4:32] 

Number of data streams N [4:16] 
Receiver antenna K 16 

AoDs of AVR [ ]6, 6π π−  
DoD of AVR [ ],π π−  

Quantization levels 25 

4.1 Analysis of Achievable Rate with Antennas per RF Chain M. 
In this section, the experimental results of the antennas per RF chain are analyzed and 
compared with the results of five different precoding techniques. Fig. 5 and Fig. 6 show the 
achievable rates of the SVD precoding, the sparse precoding, the DS precoding, the EPI 
precoding, and the SIC precoding with different M and signal-to-noise ratio (SNR) values.  

As shown in Fig. 5, the number of RF chains N is set to 8. We obtaine different achievable 
rates with various M. The fully digital SVD precoding has the best performance comparing to 
the other precoding methods under all SNRs and BS antennas. The sparse precoding has the 
next highest performance and the DS precoding shows a performance similar to that of the 
sparse precoding. The SIC precoding has low performance due to the local-optimum of the 
sub-connected architecture. The proposed precoding has a similar performance to the sparse 
precoding. Due to the sparsity of the massive MIMO channel matrix, the maximum 
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eigenvalues and their eigenvectors represent the main components of the channel matrix. Thus, 
the EPI precoding has a better performance by using the top eigenvalues and their eigenvectors. 

Fig. 6 shows the achievable rate of five precodings with MN=128, N=8, and SNR=0 dB. 
Similar to Fig. 5. the performance in descending order is the SVD precoding, the sparse 
precoding, the DS precoding, the EPI precoding, and the SIC precoding. However, the EPI 
precoding is close to  the performance of the SVD precoding when the SNR value is large, but 
the computation complexity of the EPI precoding is lower than that of the sparse precoding. 

 
Fig. 5. Achievable rate of five precoding methods with the number of transmitter per RF chain 

antennas and SNR( N=8). 

 
Fig. 6. Achievable rate comparison for 128 16×  mmWave MIMO systems (N=8). 

4.2 Analysis of Achievable Rate with Data Streams N. 
In this section, the experimental results of the data streams N are analyzed with the result five 
different precoding. Fig. 7 and Fig. 8 show the achievable rate of five precoding when M=16. 
The performances are like that shown in Fig. 5, the EPI precoding is close to the performance 
of the sparse precoding and the DS precoding when SNR>0 dB. The achievable rate of the 
sparse precoding and the EPI precoding reach 102 bps/Hz when the SNR is 30 dB. Under a 
low SNR environment, those five precoding has small performance gaps due to high noise 
power, which limits the total achievable rate. Especially in Fig. 8, as the SNR increasing, all 
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precoding had a better achievable rate. The “gap” between the sparse precoding and the EPI 
precoding decreases as the SNR increases. However, the EPI precoding has a lower cost and 
computation complexity than the sparse precoding. 

 
Fig. 7. Achievable rate of five precoding methods with different data stream N and SNR(M=16). 

 
Fig. 8. Achievable rate comparison for 256 16×  mmWave MIMO systems (M=16).  

 
Fig. 9. Achievable rate comparison against the number of the data streams (SNR=0dB, L=32). 
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Table 3. The performance comparison of five precodings 

precoding Architecture RF chain PSs Complexity Achievable 
Rate 

SVD Digital 256 0 72 10×  64.56bps/Hz 

DS dynamic subarray 16 256 72 10×  51.06 bps/Hz 

Sparse fully-connected 16 4096 61.0 10×  52.15bps/Hz 

EPI sub-connected 16 256 53.2 10×  48.54bps/Hz 

SIC sub-connected 16 256 42.5 10×  15.12bps/Hz 

 
Fig. 9 shows the achievable rate variation against the number of different data streams N, 

when 16M =  and SNR = 0 dB. Based on the Fig. 9, the performance of the EPI precoding 
is worse than that of the sparse precoding, the DS precoding, and the digital SVD precoding. 
The fully-connected architecture hybrid precoding has the better performance than the DS and 
the sub-connected architecture. However, the sub-connected architecture has a lower 
complexity and cost. 

To compare the cost and complexity of the different precoding, the performance 
comparisons of those five precoding are given in Table 3. As shown in Table 3, the four 
hybrid precoding architectures including the full-digital (SVD precoding), the full-connected 
(sparse precoding), the dynamic subarray (DS precoding) and the sub-connected (EPI and SIC 
precoding) architectures, the RF chains, the PSs, the complexity, and the achievable rate are 
compared for the mmWave massive MIMO systems with M=16, NRF=16, L=32, n=5, SNR=10 
dB and N=16. As shown in Table 3, the SVD precoding required 256 RF chains, and the RF 
chain and PS are costly for communication systems; thus the cost of the SVD precoding is 
immense. Although the fully-connected architecture requires the similar RF chains, it needs 
more PSs than the dynamic subarray and sub-connected architecture. the DS precoding has a 
better performance than the EPI precoding, but its computational complexity is enormous. 
Although the EPI precoding and SIC precoding are based on a sub-connected architecture and 
the complexity of the EPI precoding is greater than that of the SIC precoding, the achievable 
rate of the EPI precoding (45.84bps/Hz) is greater than that of the SIC precoding (15.12bps/Hz) 
with sub-connected architecture. Overall, the EPI precoding provides a trade-off between 
transmission rate, the computation complexity and the cost. Thus, in a real communication 
environment, the hybrid precoding based on the EPI method is suitable for mmWave 
communication systems. 

4.3 Analysis of Energy Efficiency 
The energy efficiency of the hybrid precoding is expressed as the ratio of the achievable rate 
and energy consumption to express the trade-off between these two factors [25]: 

tot

RE
P

∆

=                                                           (31) 

where totP  is the total power consumption of the transmitter. The total power consumption for 
different hybrid precoding architectures is defined in Table 4. 
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Table 4. Transmit power consumption for different architecture in mmWave massive MIMO systems 
Architecture Total power consumptions 

Full-connected 22 BB RF PSP P MNP MN P+ + +  
Dynamic- sub-connected 22 BB RF PS swP P MNP MN P MNP+ + + +  

Sub-connected 2 BB RF PSP P MNP MNP+ + +  

P  is the transmit power, BBP  is the digital power, RFP  is the RF power, PSP  is the PS power, 
and SWP is the switch network power. In our simulation, P is 10w, BBP  is  200mW, RFP  is 
300mW, PSP  is 50mW, and SWP  is 5mW. The energy efficiency of different precoding is 
given in Fig. 10. Due to the dynamic subarray architecture, the DS precoding has the best 
energy efficiency but its complexity is immense compared to that of other precoding. 
Additionally, the sub-connected architecture has a better energy efficiency than the sparse 
precoding with a fully-connected architecture. The EPI precoding has a better energy 
performance than the SIC precoding and the sparse precoding. Therefore, the proposed low 
complexity precoding is more energy efficient for mmWave massive MIMO systems. 

 
Fig. 10. Average energy efficiency for different architecture in 128 16×  mmWave MIMO system.  

  
Fig. 11. Achievable rate comparison of different ξ for an 256 16MN K× = ×  (M = 16) mmWave 
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4.4 Analysis of Achievable Rate with Imperfect CSI. 
The effect of the imperfect CSI is evaluated with the EPI hybrid precoding. The imperfect CSI 
Ĥ  can be modelled as [1] 

2ˆ 1ξ ξ= + −H H E                                                     (32) 

where H  is the perfect channel matrix, [0,1]ξ ∈ is the CSI accuracy, and E  is the error 
matrix with the distribution i.i.d. CN (0, 1). Fig. 11 shows the sum achievable rate comparison 
for an 256 16MN K× = ×  (N =8) mmWave MIMO system, for which different ξ scenarios are 
simulated. The EPI hybrid precoding is robust to different ξ. As shown in Fig. 11, the 
achievable rate of the EPI precoding approaches the perfect CSI scenario (ξ = 1) when ξ = 0.9. 
Even when the CSI accuracy is quite poor (i.e., ξ = 0.5), the EPI precoding achieves more than 
80% sparse precoding performance in the perfect CSI scenario. Therefore, the EPI precoding 
has the better performance in the imperfect CSI scenario.  

4.5 Analysis of Achievable Rate with Scatting Cluster L. 
The rank of the mmWave channel is equal to the number of scattering clusters L; if L is small, 
the number of data streams is N, and the performance of the hybrid precoding decreases, 
because the independent eigenvectors of the channel matrix cannot support transmitting N data 
streams. To explain the relationship between the spectral effectiveness and the number of 
scattering clusters L, the simulation results are shown in Fig. 12. The number of data streams 
is set to 16. When the scattering clusters are small at 16, the achievable rate increases as L 
increases because when L<N, the number of eigenvectors cannot support the transmission of 
N data streams, which provides L independence eigenvectors to design hybrid precoding. 
When L>N, the performance of the hybrid precoding is not limited by the eigenvectors of the 
channel matrix. The number of data streams N influences the achievable rate. As shown in Fig. 
9, when L=32, the achievable rate increases as N increases.  

 
Fig. 12. Achievable rate comparison of different scattering clusters mmWave MIMO systems (M 

=16, N=16, and SNR=0dB). 
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5. Conclusion 
In this paper, we propose a novel hybrid precoding for mmWave massive MIMO systems. 
First, we utilize the hybrid precoding to approach the maximum eigenvectors of the channel 
matrix, with the aim of obtaining the maximum achievable rate in the sub-connected 
architecture. Then we introduce the EPI method to obtain the maximum eigenvalues and their 
eigenvectors to avoid the SVD procedure. Then the Aitken method is used to accelerate the 
convergence of the EPI method. Based on the EPI and Aitken methods, we can apply hybrid 
precoding in mmWave massive MIMO systems with low computation complexity. Finally, 
the simulation results show that the EPI algorithm has a near-optimal performance 
approaching sparse precoding and digital SVD precoding under low levels of computational 
complexity.  

In addition, some further investigations will focus on two directions. 1) The impacts of the 
SNR on our EPI method will be studied; and we will conduct deeper research on filter 
technology before the hybrid precoding. 2) Quantitative analysis will be given more attention 
between lower complexity and faster computational speed in our upcoming work.  

Appendix 
APPENDIX I (EPI method) 
Let 1λ= −B A I , Then 1( , )i iλ λ− p are eigenpairs of B . 

Proof: 

1

1 1 1 1

10

λ
λ λ

−
−

=

1 1 1Bp = Ap p
= p p

p
                             (33) 

and  
1

1

1( )

i i i

i i i

i i

λ
λ λ
λ λ

= −
= −
= −

Bp Ap p
p p

p
                                    (34) 

Assuming A  is a Hermitian matrix, the matrices A  and HA  have the same set of 
eigenvalues. Let ( ),i iλ w and ( ),j jλ p denote the eigenpairs of HA  and A . If i jλ λ≠ ,

0T
i j =w p .  

Proof: 
0 ( ) ( )

( )

T T T
i j i j

T T
j i j i j i

T
j i i j

λ λ

λ λ

= −

= −

= −

w Ap p A w

w p p w

w p

                                            (35) 

  If i jλ λ≠ , 0T
i j =w p . 

Let T
i iλ= −B A p x  where 1T

i =p x . Then the eigenvalues of B  are 0, and jλ  for j i≠ . 
Proof: 
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0
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λ
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= −
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Bp Ap p x p
p p                                                   (36) 

and 
( )T T T

j i i j

T T
j i i j

T
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j j

λ

λ

λ

= −

= −

=

=

B w A p x w

A w xp w
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.                                                 (37) 

Based on (35), we can use the PI method to obtain eigenvalues by deflation method as 
follows: 

1 12

2

,i
i

i

= =
ux u p
u

                                                              (38) 

( 1) ( )
T

i i i i iλ+ −B = B u x                                                           (39) 
APPENDIX II (Aitken method) 
According to the traditional differential mean value theorem: 

1 ( )k kx xϕ+ =)       (40) 

1 ( ) ( ) ( )( )k k kx x x x x xϕ ϕ ϕ ξ+ ′− = − = −) .   (41) 

Assume. There is a constant 1q <  such that 

1 ( )k kx x q x x+− ≈ −) ,     (42) 
then 

1 1( )k kx xϕ+ +≈ )% , 1 1( )k kx x q x x+ +− = − )% .   (43) 
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