• Title/Summary/Keyword: fusion networks

Search Result 225, Processing Time 0.027 seconds

A New Method of Remote Sensing Image Fusion Based on Modified Kohonen Networks

  • Shuhe, Zhao;Xiuwan, Chen;Junfeng, Chen;Yinghai, Ke
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1337-1339
    • /
    • 2003
  • In this article, a new remote sensing image fusion model based on modified Kohonen networks is given. And a new fusion rule based on modified voting rule was established. Select Shaoxing City as the study site, located at Zhejiang Province, P.R.China. The fusion experiment between Landsat TM data (30m) and IRS-C Pan data (5.8m) was performed using the given fusion method. The fusion results show that the new method can gain better result in apply ing to the lower hill area, and the whole classification accuracy was 10% higher than the basic Kohonen method. The confusion between the woodlands and the waterbodies was also diminished.

  • PDF

Collaborative Wireless Sensor Networks for Target Detection Based on the Generalized Approach to Signal Processing

  • Kim, Jai-Hoon;Tuzlukov, Vyacheslav;Yoon, Won-Sik;Kim, Yong-Deak
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1999-2005
    • /
    • 2005
  • Collaboration in wireless sensor networks must be fault-tolerant due to the harsh environmental conditions in which such networks can be deployed. This paper focuses on finding signal processing algorithms for collaborative target detection based on the generalized approach to signal processing in the presence of noise that are efficient in terms of communication cost, precision, accuracy, and number of faulty sensors tolerable in the wireless sensor network. Two algorithms, namely, value fusion and decision fusion constructed according to the generalized approach to signal processing in the presence of noise, are identified first. When comparing their performance and communication overhead, decision fusion is found to become superior to value fusion as the ratio of faulty sensors to fault free sensors increases. The use of the generalized approach to signal processing in the presence of noise under designing value and decision fusion algorithms in wireless sensor networks allows us to obtain the same performance, but at low values of signal energy, as under the employment of universally adopted signal processing algorithms widely used in practice.

  • PDF

Optimal Strategies for Cooperative Spectrum Sensing in Multiple Cross-over Cognitive Radio Networks

  • Hu, Hang;Xu, Youyun;Liu, Zhiwen;Li, Ning;Zhang, Hang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3061-3080
    • /
    • 2012
  • To improve the sensing performance, cooperation among secondary users can be utilized to collect space diversity. In this paper, we focus on the optimization of cooperative spectrum sensing in which multiple cognitive users efficiently cooperate to achieve superior detection accuracy with minimum sensing error probability in multiple cross-over cognitive radio networks. The analysis focuses on two fusion strategies: soft information fusion and hard information fusion. Under soft information fusion, the optimal threshold of the energy detector is derived in both noncooperative single-user and cooperative multiuser sensing scenarios. Under hard information fusion, the optimal randomized rule and the optimal decision threshold are derived according to the rule of minimum sensing error (MSE). MSE rule shows better performance on improving the final false alarm and detection probability simultaneously. By simulations, our proposed strategy optimizes the sensing performance for each cognitive user which is randomly distributed in the multiple cross-over cognitive radio networks.

Multi-Attribute Data Fusion for Energy Equilibrium Routing in Wireless Sensor Networks

  • Lin, Kai;Wang, Lei;Li, Keqiu;Shu, Lei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.5-24
    • /
    • 2010
  • Data fusion is an attractive technology because it allows various trade-offs related to performance metrics, e.g., energy, latency, accuracy, fault-tolerance and security in wireless sensor networks (WSNs). Under a complicated environment, each sensor node must be equipped with more than one type of sensor module to monitor multi-targets, so that the complexity for the fusion process is increased due to the existence of various physical attributes. In this paper, we first investigate the process and performance of multi-attribute fusion in data gathering of WSNs, and then propose a self-adaptive threshold method to balance the different change rates of each attributive data. Furthermore, we present a method to measure the energy-conservation efficiency of multi-attribute fusion. Based on our proposed methods, we design a novel energy equilibrium routing method for WSNs, viz., multi-attribute fusion tree (MAFT). Simulation results demonstrate that MAFT achieves very good performance in terms of the network lifetime.

Traffic Flow Prediction with Spatio-Temporal Information Fusion using Graph Neural Networks

  • Huijuan Ding;Giseop Noh
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.88-97
    • /
    • 2023
  • Traffic flow prediction is of great significance in urban planning and traffic management. As the complexity of urban traffic increases, existing prediction methods still face challenges, especially for the fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better performance than other models.

Data Alignment for Data Fusion in Wireless Multimedia Sensor Networks Based on M2M

  • Cruz, Jose Roberto Perez;Hernandez, Saul E. Pomares;Cote, Enrique Munoz De
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.229-240
    • /
    • 2012
  • Advances in MEMS and CMOS technologies have motivated the development of low cost/power sensors and wireless multimedia sensor networks (WMSN). The WMSNs were created to ubiquitously harvest multimedia content. Such networks have allowed researchers and engineers to glimpse at new Machine-to-Machine (M2M) Systems, such as remote monitoring of biosignals for telemedicine networks. These systems require the acquisition of a large number of data streams that are simultaneously generated by multiple distributed devices. This paradigm of data generation and transmission is known as event-streaming. In order to be useful to the application, the collected data requires a preprocessing called data fusion, which entails the temporal alignment task of multimedia data. A practical way to perform this task is in a centralized manner, assuming that the network nodes only function as collector entities. However, by following this scheme, a considerable amount of redundant information is transmitted to the central entity. To decrease such redundancy, data fusion must be performed in a collaborative way. In this paper, we propose a collaborative data alignment approach for event-streaming. Our approach identifies temporal relationships by translating temporal dependencies based on a timeline to causal dependencies of the media involved.

A data fusion method for bridge displacement reconstruction based on LSTM networks

  • Duan, Da-You;Wang, Zuo-Cai;Sun, Xiao-Tong;Xin, Yu
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.599-616
    • /
    • 2022
  • Bridge displacement contains vital information for bridge condition and performance. Due to the limits of direct displacement measurement methods, the indirect displacement reconstruction methods based on the strain or acceleration data are also developed in engineering applications. There are still some deficiencies of the displacement reconstruction methods based on strain or acceleration in practice. This paper proposed a novel method based on long short-term memory (LSTM) networks to reconstruct the bridge dynamic displacements with the strain and acceleration data source. The LSTM networks with three hidden layers are utilized to map the relationships between the measured responses and the bridge displacement. To achieve the data fusion, the input strain and acceleration data need to be preprocessed by normalization and then the corresponding dynamic displacement responses can be reconstructed by the LSTM networks. In the numerical simulation, the errors of the displacement reconstruction are below 9% for different load cases, and the proposed method is robust when the input strain and acceleration data contains additive noise. The hyper-parameter effect is analyzed and the displacement reconstruction accuracies of different machine learning methods are compared. For experimental verification, the errors are below 6% for the simply supported beam and continuous beam cases. Both the numerical and experimental results indicate that the proposed data fusion method can accurately reconstruct the displacement.

Suboptimal Decision Fusion in Wireless Sensor Networks under Non-Gaussian Noise Channels (비가우시안 잡음 채널을 갖는 무선 센서 네트워크의 준 최적화 결정 융합에 관한 연구)

  • Park, Jin-Tae;Koo, In-Soo;Kim, Ki-Seon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • Decision fusion in wireless sensor networks under non-Gaussian noise channels is studied. To consider the tail behavior noise distributions, we use a exponentially-tailed distribution as a wide class of noise distributions. Based on a canonical parallel fusion model with fading and noise channels, the likelihood ratio(LR) based fusion rule is considered as an optimal fusion rule under Neyman-Pearson criterion. With both high and low signal-to-noise ratio (SNR) approximation to the optimal rule, we obtain several suboptimal fusion rules. and we propose a simple fusion rule that provides robust detection performance with a minimum prior information, Performance evaluation for several fusion rules is peformed through simulation. Simulation results show the robustness of the Proposed simple fusion rule.

  • PDF

Robust Hierarchical Data Fusion Scheme for Large-Scale Sensor Network

  • Song, Il Young
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • The advanced driver assistant system (ADAS) requires the collection of a large amount of information including road conditions, environment, vehicle status, condition of the driver, and other useful data. In this regard, large-scale sensor networks can be an appropriate solution since they have been designed for this purpose. Recent advances in sensor network technology have enabled the management and monitoring of large-scale tasks such as the monitoring of road surface temperature on a highway. In this paper, we consider the estimation and fusion problems of the large-scale sensor networks used in the ADAS. Hierarchical fusion architecture is proposed for an arbitrary topology of the large-scale sensor network. A robust cluster estimator is proposed to achieve robustness of the network against outliers or failure of sensors. Lastly, a robust hierarchical data fusion scheme is proposed for the communication channel between the clusters and fusion center, considering the non-Gaussian channel noise, which is typical in communication systems.

Distributed Fusion Estimation for Sensor Network

  • Song, Il Young;Song, Jin Mo;Jeong, Woong Ji;Gong, Myoung Sool
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.5
    • /
    • pp.277-283
    • /
    • 2019
  • In this paper, we propose a distributed fusion estimation for sensor networks using a receding horizon strategy. Communication channels were modelled as Markov jump systems, and a posterior probability distribution for communication channel characteristics was calculated and incorporated into the filter to allow distributed fusion estimation to handle path loss observation situations automatically. To implement distributed fusion estimation, a Kalman-Consensus filter was then used to obtain the average consensus, based on the estimates of sensors randomly distributed across sensor networks. The advantages of the proposed algorithms were then verified using a large-scale sensor network example.