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Abstract

In this paper, we propose a distributed fusion estimation for sensor networks using a receding horizon strategy. Communication chan-

nels were modelled as Markov jump systems, and a posterior probability distribution for communication channel characteristics was cal-

culated and incorporated into the filter to allow distributed fusion estimation to handle path loss observation situations automatically. To

implement distributed fusion estimation, a Kalman-Consensus filter was then used to obtain the average consensus, based on the esti-

mates of sensors randomly distributed across sensor networks. The advantages of the proposed algorithms were then verified using a

large-scale sensor network example.
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1. INTRODUCTION 

Distributed computing has been a crucial philosophy in engineering

problems, due to its ease of scalability, efficiency, and reliability.

Many researchers today are attempting to apply this concept to

various disciplines, including data fusion in sensor networks [1],

distributed camera networks [2], and mobile robotics [3]. In the

literature, the development of distributed signal processing algorithms

is not a new topic, having been investigated over the past few years,

and several types of distributed signal processing algorithms are well-

known [4,5].

Recently, implementation of distributed signal processing

algorithms has faced practical issues, such as varied network

topologies and imperfect communication channels. As such, network

scalability has been discussed in distributed Kalman filtering, in an

attempt to address issues related to ad-hoc network topologies [6].

Accordingly, the topology of a network can be understood via

algebraic graph theory, with individual network nodes employing

Kalman filters to consider the limited communication bandwidth

between neighboring nodes.

Imperfect communication channels have been another important

issue for distributed signal processing implementation. As many

sensors are randomly distributed and communicate with each other

through wireless channels, communication links occasionally break

down and become unstable. This can delay observations and incur

packet losses. In previous research, the communication delay issue

has been investigated as an out-of-sequence measurement problem

[7]. 

To model an unreliable communication channel, a latent variable

for the observation system is considered. The arrival of the

observation is controlled by this latent variable, and under this

formulation, a statistical convergence analysis was performed in [8].

The intermittent observation was modelled as a conditional

probability distribution 

(1)

where  , , ,  are zero mean white Gaussian observation

noise, a latent variable, noise covariance with no loss, and

unreliable noise deviation (i.e.,  means the absence of

observation), respectively. In research conducted under this

formulation, it was assumed that the latent variable  was a

Bernoulli process dependent on the state space model, and that

there was a critical arrival probability value at which the

estimation error covariance was bounded [8]. Because the

algebraic Ricatti equation becomes a stochastic differential

equation, only a bound analysis was available.

When observation noise is controlled using a latent variable, it

is not easy to determine or model the value of the hyper-parameter

 that describes the characteristics of the communication channel.

In this paper, rather than using the observation noise hyper-

parameter, the characteristics of the communication channel have

been modelled using the multiple model adaptive estimation

(MMAE) approach [9].

To adjust for an observation mode that is switching continuously,

we have proposed two algorithms. First, an interacting multiple model
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(IMM) filter was applied to solve the MMAE problem. Second, by

using a sliding window, the posterior probability of link failure was

calculated and incorporated into the information fusion filtering. The

sliding window collected the most recent set of observations, which

were then sequentially processed, to calculate the posterior probability

of the observation mode (absence or presence). Two MMAE solutions

were implemented in distributed Kalman filtering, to ensure that

intermittent observation situations were handled efficiently in a large-

scale sensor network. 

The remainder of paper has been organized as follows. Section 2

focusses on problem formulation, while preliminaries, including

information fusion filtering and MMAE, are then given in Section 3.

We provide details of the proposed algorithm in Section 4, and the

advantages of the proposed algorithm have been evaluated in Section

5, before we present our conclusions in Section 6. 

2. PROBLEM FORMULATION

Consider the discrete-time dynamic linear system: 

(2)

where  is the system matrix,  is the observation

matrix for the th sensor among  sensors,  is the state

vector,  is the output vector (observation) of the th

sensor in the network, and  and  are Gaussian

random vectors with zero mean and covariance  and ,

respectively. In addition,  is independent of  for , and the

initial state vector  is also assumed to be Gaussian, with zero mean,

and covariance . 

Here, the main goal was to obtain an accurate estimate given

multiple observations, i.e., , under an unreliable

communication channel. In the proposed algorithm, we

estimated another state, referred to as the communication

characteristic state, , to cope with intermittent observations. In

this framework, each sensor calculated the posterior probability

of mode , which was then incorporated into the Kalman

filtering equation, as a characteristic of the communication

channel, at the current time. 

In multiple sensory environments, a central fusion scheme is

intuitive, where all observations are collected at one center and

processed at once. As the number of sensors increases, the network

size also grows and the topology is time-varying. In this case, a

central fusion scheme would not be suitable [4]. A decentralized (or

distributed fusion) algorithm has been suggested to satisfy these

conditions, and is currently the focus of rigorous investigation. In a

state estimation under multiple sensors in a flexible network

environment, having an efficient distributed signal processing

algorithm is essential from a practical perspective. 

Considering the target system in (2), decentralized Kalman filtering

is known to be globally optimal under perfect communication

conditions [1]. However, following the recent initial work that has

reported on state estimation with intermittent observations [8], the

problem has been extended to multiple sensory systems, and

discussion has been based on a graphical understanding of the

network [10].

3. PRELIMINARIES

In this preliminary section, an information fusion filter [1, 4] has

been introduced as a basic tool for fusing distributed sensors over the

network. Further, a multiple model adaptive estimation has been

discussed, for use in the mode probability calculation to manage

intermittent observations.

3.1 Information Fusion Filter

In the centralized fusion set up, the observation system in (2) can

be reformulated into a composite form, as shown in Eq. (3):

 (3)

Then, the information forms of Kalman filtering equations

(information filter) are given as follows:

Observation Update;

 (4)

Time Update;

(5)

where  and  represent the contribution terms of the state and

information, respectively. To derive the decentralized fusion filter, a

mathematically equivalent, decentralized form of the information

filter can then be obtained, from the parallelization of the contribution

terms, as shown in equations (6) and (7):

(6)

(7)

Therefore, equations (4)–(7) define the information fusion filter that

will be used in the proposed algorithm for distributed fusion, and the
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optimality of the distributed fusion algorithm is guaranteed due to

mathematical equivalence.

3.2 Estimate Fusion within Link Failure between

Cluster Heads and Nodes

When a system has parametric uncertainties, it can be modelled

with a set of multiple models. A well-known example of multiple

models in state estimation is the problem of tracking maneuvering

targets. Target maneuvers have a set of distinctive models, including

constant velocity, constant acceleration, and turning motion. Hence,

by pre-setting a possible set of models, the system is expected to

operate as one of the models. Existing solutions for the MMAE

problem are to use a joint Lainiotis Kalman filter (LKF) [9] in static

mode, and an interacting multiple model filter (IMM filter) [11] in

dynamic mode switching, respectively. In the multiple model setting,

the state space model (2) can be represented by considering the mode

state , such that:

(8)

where  represents the time-varying model of an observation system,

as shown in Eq. (9):

(9)

Under this assumption, the multiple model observation system

defined by Equations (8)–(9) basically includes the intermittent

observation model in (1). Solutions given in LKF and IMM can then

utilize the likelihood probability  to determine the current

mode, which is subsequently used to obtain an accurate state estimate.

Given the initial prior probability of each model , the

recursion for posterior probability, using Bayes rule, is given as

shown in Eq. (10):

(10)

 

The likelihood probability  can then be calculated

from the normalized residual, as shown in (11):

 

(11)

In this paper, we have proposed using MMAE solutions in

distributed sensor networks to handle intermittent observations

efficiently. To estimate the state vector in intermittent observation

circumstances adaptively, an IMM-based KCF, and a sliding

window-based KCF have been proposed. The IMM-based

approach for intermittent observations can be more effective, as

the observation mode is arbitrarily switched without knowing the

switching times. However, this approach requires both prior

knowledge of the probability of switching between modes and

additional computations. In the second approach, the transition

matrix and additional computations have been avoided by using a

sliding window-type algorithm instead of sacrificing a little

accuracy. Details of the proposed algorithms have been presented

in the following section.

4. PROPOSED ALGORITHMS

4.1 Basic Framework

By incorporating IMM and the sliding window approach into the

filtering algorithm, we have proposed two algorithms to adjust

intermittent observations in the distributed sensor network adaptively.

In the IMM-based approach, intermittent observations have been

handled by calculating the mode probability of the observation system

(8)–(9) using a special mixing process involving mode probability,

estimates, and covariance.

To address the computational complexity issue inherent in the IMM

approach, the second method (sliding window approach) has been

proposed, which considers a recent observation set from the  sensor

. The purpose is to calculate mode

probability , where Δ is the window length. This

approach can be seen as a modified version of the LKF algorithm.

When the mode probability  is available, it can be

incorporated into the information fusion filtering equation to handle

the intermittent communication channels, as shown in Equations (12)

and (13):

Observation Update:

 

 (12)

Time Update:

(13)

Under the modified information filtering framework of

equations (12)–(13), we have proposed two algorithms for

distributed Kalman filtering that have intermittent observations, by

calculating mode probability using IMM and sliding window-

based LKFs, respectively.
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4.2 Distributed Information Fusion Filtering with

Intermittent Observation via the IMM Approach

Information fusion filters have often been used for decentralized

fusion algorithms in sensor networks, but can only be used in local

sensor nodes in a large-scale network. The scalability and topology of

these networks are not typically considered, even though they are

crucial factors in real situations. To satisfy these requirements, a

distributed Kalman filtering algorithm that uses a consensus

algorithm—which has been referred to as a Kalman-Consensus filter

(KCF)—was proposed recently [6].

Unlike other data fusion algorithms, there is no fusion center in the

KCF; individual sensor nodes calculate their own state estimates instead,

and communicate messages (contribution terms and local estimates for

each node) to make a global agreement that converges to a certain value.

As mentioned in the introduction, the scalability and topology of this

network can be understood using algebraic graph theory [6]. 

In brief, suppose there is a large scale network with an ad-hoc

topology, described by the undirected graph , and N

nodes. Vertices  denote the sensor nodes, and edges

 refer to the communication links between them. An

example of a large-scale sensor network of randomly distributed

sensors is displayed in Figure 1. Here, the KCF serves as a micro-

filter for a network that only shares messages with its neighbors

.

The IMM filter is a well-known method for MMAE problems

requiring dynamic mode switching. Therefore, a natural distributed

information fusion filtering solution for having intermittent

observations is to embed the IMM method into a KCF micro-filter.

The first proposed algorithm (IMM-based adaptive KCF (AKCF)) is

described below, as Algorithm 1.

Algorithm 1: IMM-based AKCF of node i

Given , parameter , mode probability , and

the transition matrix , between  and 

where 

1. Predicted mode probability

2. Mixing weight

3. Mixing estimate

4. Mixing covariance

5. KCF procedure

A. Obtain measurement 

B. Calculate mode likelihood  using (11)

C. Update the mode probability as

D. Compute the contribution term from the information state and

matrix, such that

 

E. Broadcast message  to neighbors in 

F. Collect messages  from neighbors

G. Aggregate neighbor information states and matrices, including

node : 

H. Compute the Kalman-Consensus estimate

,

I. Update stage

J. Final estimate

As shown in Algorithm 1, every node in the IMM-based AKCF

requires all the above calculations for each mode. In addition,

mixing for weight and estimate is required to adjust for arbitrary
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mode switching. However, mode switching does not occur

frequently in real situations, because the loss of packets can be

thought of as a rare event. Under this assumption, we proposed our

second algorithm to reduce computational cost while still showing

reasonable performance, based on using LKF with a sliding window

approach.

4.3 Distributed Information Fusion Filtering with

Intermittent Observation via a Sliding Window-based

LKF

From a static mode case, initialization of the mode probability

needs to be considered to implement LKF in the dynamic mode

switching case. In this proposed method, we set the window to a fixed

size, which was receding and being processed to calculate mode

probability. 

In brief, details of the algorithm are as follows: given the initial

prior probability, using (10) the mode probability was calculated until

it converged. The initial length of window Δ was then set as the

current time of convergence, and the sliding window containing the

most recent set of observations was created, and started to calculate

mode probability .

For every sliding window, we set the initial probability as shown in

equation (14):

(14)

where α is the prior probability of the arrival of an observation. Figure

2 illustrates the sliding window scheme for calculating mode

probability. In the proposed approach, the mode probability

asymptotically converges (either at the signal presence or signal

absence) for the threshold for the fixed window size, under the mild

assumption mentioned in the previous section.

Algorithm 2: Sliding window-based AKCF of node i

Given , , parameter  

1. Obtain measurement 

2. Calculate mode probability Given 

For 

Evaluate (11) for 

Evaluate the Bayes recursion (10), where 

End

3. Compute the contribution term for the information state and

matrix, such that

4. Broadcast message  to neighbors in 

5. Collect messages  from neighbors

6. Aggregate the information states and matrices from neighbors,

including node: 

7. Compute the Kalman-Consensus estimate

,

8. Update stage

It should be noted that the sliding window-based AKCF does not

inherently take into account the mixing procedure as in the IMM

method; hence, it is less adaptive when the mode is quickly switching.

However, it does have significant advantages in terms of

computational time, because the filter bank is not deployed.

Therefore, the sliding window approach enables moderate

observation mode switching, as it monitors the temporal history of

mode probability.

5. EXPERIMENTAL RESULTS

To validate the advantages of the proposed algorithms and then

compare them, a target tracking example has been considered.

Given the target dynamics of a circular movement
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where , ,

 and 

 

In addition,  is a 2 x 2 identity matrix, which is a discretized

model with a step-size, ε, = 0.015, and the initial position and

uncertainty are  and  respectively. A

moving target having a circular motion can then be observed via the

large-scale sensor network in Figure 1, with 100 sensor nodes. Here,

the sensor nodes measure the target position with intermittent sensor

observations linked to the node, i.e.,

where either , or

. In this case, the data loss in the

communication channel link is modelled using link failure

probability—that is, —where  is a

uniform random distribution. Of course, link failure probability can be

modeled as a Markov chain, and in such a case, the proposed

algorithms would be expected to be more efficient. 

The observation noise for each sensor is white Gaussian noise, with

. For the sliding window-based AKCF, the window

length, Δ, was set at 3.

In this example, the target was not fully observable by individual

sensors, and intermittent observations occurred randomly. Figure 3

illustrates the status of links in the communication channels of

selected node pairs during the experimentation period. From a

practical viewpoint, the arbitrary switching model is reasonable for

describing intermittent observations, as we really do not know exactly

when there are packet losses in channels. In intermittent observation

situations, estimated trajectories for the sliding window-based AKCF

and KCF have been compared in Figure 4. 

The experimental results clearly show that KCF performance was

seriously degraded by the effect of intermittent observations. In

contrast, AKCF adaptively adjusted for intermittent observations,

thereby allowing it to estimate the object’s position accurately. 

The same experiment was then performed using the IMM-based

AKCF, and the results obtained by comparing the simulation outcome

with the other algorithms have been displayed in Figure 5. Whereas

tracking accuracies were easily compared between the KCF and

sliding window-based AKCF in Figure 4, the two AKCF algorithms

showed almost the same performance, and so their performance

evaluations have been displayed based on mean square error (MSE),

calculated using 1000 Monte Carlo runs. Note that in every Monte

Carlo run, the distributed sensor networks for different topologies

varied, and communication channel conditions were randomly

selected. The MSE comparison confirmed that the two proposed

algorithms (IMM-based AKCF and sliding window-based AKCF) are

robust and accurate when faced with intermittent observations (in a

distributed sensor network). In addition, under mild conditions

(intermittent observations rarely occuring), the sliding window-based
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Fig. 3. Link status of selected sensor nodes in the example

Fig. 4. Estimated trajectory comparison (KCF vs Sliding window-

based AKCF)
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AKCF handled uncertainty in communication channels efficiently,

with fewer computations required compared to the IMM-based

approach and without loss of advantages. 

Note that the two proposed algorithms can be used in a

complementary manner: when switching is frequent, use the IMM-

based algorithm, and when rare, use the sliding window-based

algorithm. 

6. CONLUSION

In this paper, the state estimation problem for a large-scale sensor

network with intermittent observations has been discussed. Two

adaptive algorithms were subsequently suggested to alleviate the

inaccuracies caused by imperfect communication links in this type of

sensor network. Unlike the approach used in other studies, the

proposed approach automatically manages data loss in the channel

without requiring additional indicators. Using a target tracking

example under a reasonable assumption, significant improvements

have been confirmed. Further, by using an alternative method,

computational complexity was reduced without degrading the

perceived improvements.
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