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Abstract 
 

To improve the sensing performance, cooperation among secondary users can be utilized to 

collect space diversity. In this paper, we focus on the optimization of cooperative spectrum 

sensing in which multiple cognitive users efficiently cooperate to achieve superior detection 

accuracy with minimum sensing error probability in multiple cross-over cognitive radio 

networks. The analysis focuses on two fusion strategies: soft information fusion and hard 

information fusion. Under soft information fusion, the optimal threshold of the energy detector 

is derived in both noncooperative single-user and cooperative multiuser sensing scenarios. 

Under hard information fusion, the optimal randomized rule and the optimal decision 

threshold are derived according to the rule of minimum sensing error (MSE). MSE rule shows 

better performance on improving the final false alarm and detection probability 

simultaneously. By simulations, our proposed strategy optimizes the sensing performance for 

each cognitive user which is randomly distributed in the multiple cross-over cognitive radio 

networks. 
 

 

Keywords: Cross-over cognitive radio networks, cooperative spectrum sensing, soft 

information fusion, hard information fusion 
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1. Introduction 

Current wireless networks are characterized by a static spectrum allocation policy. However, 

with the explosive development of wireless services, the policy faces spectrum scarcity in 

particular spectrum bands, and the limited radio spectrum becomes increasingly crowded. A 

recent study by Federal Communications Commission (FCC) shows that, in most of time, the 

actual licensed spectrum is largely under-utilized in vast temporal and geographic dimensions 

[1]. 

Cognitive radio enables much higher spectrum efficiency by dynamic spectrum access [2]. 

Consequently, it is a potential technology to reuse the under-utilized spectrum bands. In 

cognitive radio systems, the unlicensed wireless users (secondary users or cognitive users) 

take chances to access the spectrum without causing interference to the licensed users 

(primary users) so that the spectrum access is dynamic and opportunistic [3]. One of the most 

fundamental problems of cognitive radio technology is spectrum sensing. By sensing and 

adapting to the environment, once an idle channel is sensed, the secondary system will access 

this channel [4]. In order to avoid interference to primary users (PUs), a cognitive radio (CR) 

needs to efficiently and effectively detect the presence of the primary users. However, many 

factors make the spectrum sensing problem complicated, such as low signal-to-noise ratio 

(SNR), little knowledge of primary user and detrimental effects of fading and shadowing. To 

combat these impacts, cooperative spectrum sensing has been proposed to obtain the space 

diversity in multiuser CR networks [5], [6]. In cooperative spectrum sensing, each CR user 

receives the signals from the primary users, independently makes its local decision, and then 

sends the local observation to the fusion center (FC). Next, FC makes a final decision and 

immediately responses to CR users once PUs have been detected. 

Many studies on cooperative spectrum sensing assume that all CR users share the same 

occupancy of one primary user, namely, there are two common hypotheses in the spectrum 

sensing [7]. However, in practical cognitive radio networks, CR users at different locations 

may experience different spectrum occupancies and opportunistically access different licensed 

bands since they can be either within or out of the cross-over region of multiple cognitive radio 

networks. As is shown in Fig. 1, CR1 can only access the licensed band I since it is located 

within the region of cognitive network I and out of cognitive network II and cognitive network 

III. However, CR3 can access one of the three licensed bands since it is located within the 

cross-over region of the three cognitive networks. In this case, the spectrum sensing schemes 

proposed in previous works may not be suitable. 

In the multiple cross-over cognitive radio networks, each CR user needs to carry out a 

hypothesis test by itself. However, this does not imply that the cooperation among CR users is 

unnecessary. In this paper, we focus on the optimization of cooperative spectrum sensing in 

which multiple CR users efficiently cooperate to achieve superior detection accuracy with 

minimum sensing error probability in multiple cross-over cognitive radio networks. We 

consider the multiple types of network architecture and investigate the problem of cooperative 

spectrum sensing for multiple cross-over cognitive radio networks. This is because in practical 

cognitive radio networks, numbers of CR users are distributed randomly in a certain region, it 

is possible that some CR users are located within the cross-over region of cognitive networks 

while others are not. So CR users at different locations may experience different spectrum 

occupancies. 
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Fig. 1. System model of multiple cross-over cognitive radio networks. 

To accurately access the licensed bands for each CR user which is randomly distributed in a 

certain region, we should optimize the sensing performances of cognitive network I and 

cognitive network II. Then, FC1 and FC2 immediately response to the CR users which are 

located within the cross-over region of cognitive network I and cognitive network II so that 

they can access licensed band I or licensed band II accurately, which is illustrated in Fig. 2. 

When energy detection is utilized for cooperative spectrum sensing in multiple cross-over 

cognitive radio networks, CR users report their sensing information to the corresponding 

fusion centers [8]. The analysis focuses on two fusion strategies: soft information fusion and 

hard information fusion. The former provides a theoretical bound on the average sensing error 

probability in an ideal cooperative sensing setup, while the latter leads to practical fusion and 

decision rules. 

With soft information fusion strategy, each CR user simply amplifies the received signal 

from the primary user and forwards to the fusion center [8]. The framework for two-user and 

multiple-user cooperative spectrum sensing with soft information fusion was introduced in [5], 

[6]. However, an analytical study for the false alarm probability and missed detection 

probability in the cooperative spectrum sensing has not been addressed. In this paper, we 

provide a rigorous analytical framework for cooperative spectrum sensing with soft 

information fusion, and derive the optimal threshold of the energy detector by minimizing the 

average sensing error probability in both noncooperative single-user and cooperative 

multiuser sensing scenarios. The threshold of the energy detector can be adjusted to improve 

the efficiency and reliability simultaneously. Then, an efficient spectrum sensing algorithm is 

proposed for large cognitive networks which requires only a few, not all, CR users in 

cooperative spectrum sensing to get a target error bound. 

With hard information fusion strategy, each CR user makes a “one bit” decision (1 standing 

for the presence of the primary user, 0 standing for the absence of the primary user) on the 

primary user activity and then reports the individual decision to the fusion center over a 

reporting channel. The fusion rule at the fusion center can be OR, AND, or Half-voting rule [9]. 

In this paper, we employ the randomized rule in the fusion center and analyze the 
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corresponding performance [10]. In order to minimize the sensing error, the probability in the 

randomized rule should be adaptive to the threshold of the energy detector. Specifically, the 

optimal decision threshold is derived for the randomized rule. We further derive the minimum 

sensing error probability corresponding to different threshold of the local energy detection. 

Our proposed MSE rule could appropriately improves both the final false alarm and detection 

probability simultaneously. 

In this paper, the optimal cooperative spectrum sensing strategies with soft information 

fusion and hard information fusion in multiple cross-over cognitive radio networks are 

proposed. The proposed strategies also minimize the false alarm probability and missed 

detection probability of the CR users within the cross-over region. 

The rest of this paper is organized as follows. The system model and cooperation strategies 

will be given in Section II. Sections III and IV are devoted to the analysis of cooperative 

spectrum sensing with soft information fusion and hard information fusion, respectively. The 

sensing performances of the CR users within the cross-over region will be analyzed in Section 

V. Simulated verifications will be presented in Section VI, followed by concluding remarks in 

Section VII. 

Notation: Subscripts “ f ”, “ d ”, “ m ”, “ e ” refer to false alarm, detection, missed detection, 

and average sensing error probability respectively; Superscripts “ I ”, “ II ” , “C” refer to 

cognitive network I, cognitive network II and cross-over region respectively; Subscripts “ s ” 

and “ h ” refer to soft information fusion and hard information fusion respectively. 

2. System Model and Cooperation Strategies 

2.1 System Model and Analysis of Cooperative Spectrum Sensing in Multiple 
Cross-over Cognitive Radio Networks 
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Fig. 2. System model of cooperative spectrum sensing in multiple cross-over cognitive radio networks. 

We investigate cooperative spectrum sensing in multiple cross-over cognitive radio networks 

consisting of two fusion centers and a number of CR users, which is illustrated in Fig. 2. Each 

primary user communicates using one channel in a scope of area. Assume that the CR users are 



3065            Hu et al.: Optimal Strategies for Cooperative Spectrum Sensing in Multiple Cross-over Cognitive Radio Networks 

distributed randomly within a certain region. These CR users cooperate to sense the activity of 

the two primary users. It is possible to assume that some CR users are located within the region 

of only one cognitive network and some are within the cross-over region of both two cognitive 

networks (the cross-over region is called as region C). Considering that CR users at different 

locations have different available licensed bands at the same time. We can notice that, if a CR 

user is located in region C, it can access either the licensed band I or licensed band II. 

In multiple cross-over cognitive radio networks, CR users sense the environment and then 

send their local decision results to FC1 or FC2 depending on whether they are within the 

region of cognitive network I or cognitive network II. Then, FC1 and FC2 make final decision 

results to determine which channel to access for the CR users which are located in region C. 

Assume that N  cognitive users locate within the region of cognitive network I and K  

cognitive users locate within the region of cognitive network II. We focus on the optimization 

of sensing performance for each CR user which is randomly distributed in the multiple 

cross-over cognitive radio networks. The first step is to optimize the sensing performances of 

the cooperated CRs which are located in cognitive network I and cognitive network II 

respectively. Here, we consider the optimization of cognitive network I. The optimal strategies 

can also be employed in cognitive network II. 

In cognitive network I, we assume that the distance between the CR users is small compared 

with the distance from PU1 to any CR users. Then the path loss of each CR user is almost 

identical and the primary signals received at the CR users are considered to be independent 

and identically distributed (i.i.d.) [11]. For ease of analysis, we assume that the noise power is 

the same at CR users in the case of an AWGN environment and the same decision rules are 

employed among the CR users in cognitive network I. Spectrum sensing is to properly 

determine one of the following two hypotheses 0H  (denote the absence of PU1) and 1H  

(denote the presence of PU1) according to the received signal iY  [11]. 
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where 1,...,2k u , u  is the time-bandwidth product of the energy detector, ( )iy k  is the 

received signal at the ith CR, ( )s k  is the signal of PU1, ( )i k  is the additive white Gaussian 

noise at the ith CR, ih  is the channel gain between PU1 and the ith CR, ih  is i.i.d. among CRs 

and we do not consider the exact distribution of ih . The decision statistic of energy detection is 

[12] 
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where i  denotes the instantaneous signal-to-noise ratio (SNR) at the ith CR. For a large u , 

iY  approximates the following Gaussian distribution according to the Central Limit Theorem 

[13] 
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Gaussian distribution will be used in the subsequent discussion since it is much easier to 

deal with in mathematical derivation and provides more insights than chi-square distribution. 

Since the primary signals received at the CR users are considered to be i.i.d., we can omit the 

subscript „i‟ of iY . Thus, the received signals for different CR users iY s are conditionally 

independent under each hypothesis. 

The probability density function (PDF) of Y can then be written as 
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2.2 Cooperative Strategies 

In cognitive network I, cooperative spectrum sensing requires the cooperation among multiple 

CR users. CR users sense the environment and then send their local sensing information to 

FC1 periodically via the common control channels [14]. The cooperation benefit can be 

maximized if all the sensing information reaches FC1 without any loss. However, this 

condition cannot always be satisfied due to limited wireless resource. In this paper, we focus 

on two fusion strategies: soft information fusion and hard information fusion. 

1) Soft Information Fusion: Without complex signal processing at CR users, each CR user 

simply amplifies the received signal from PU1 and forwards to FC1. Thus, FC1 can obtain the 

information from the distributed CRs perfectly. Although this is not achievable in practical 

cognitive radio networks, it provides a theoretical bound on sensing error probability 

performance in an ideal cooperative sensing setup. 

2) Hard Information Fusion: Instead of sending the received signal to FC1 directly, each CR 

user makes its own “one bit” hard decision on PU1 and then sends the individual decision to 

FC1 over a reporting channel (which can be with a narrow bandwidth). We employ the 

randomized rule in FC1 and analyze the corresponding performance. 

3. Cooperative Spectrum Sensing with Soft Information Fusion 

3.1 Single-user Sensing 

First we consider a single-user sensing scheme. In this case, the CR user continuously 

monitors the signal received from PU1. The distribution of the decision statistic is discussed in 

section II. Two quantities are usually used to assess spectrum sensing performance, namely, 

the probability of false alarm fp  and the probability of detection dp  [15]. For a non-fading 

environment, the probability of false alarm and the probability of detection can be generally 

computed by 
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where   is the energy detection threshold, ( )Q   is the Q-function defined as 
2

2
1

( )
2

t

x
Q x e dt



 

  . 

Assumed that 0( )p H  and 1( )p H  are the prior probabilities of 0H  and 1H  respectively, 

then the average sensing error is 0 1( ) ( )(1 )e f dp p H p p H p   . Since the false alarm and 

missed detection probability respectively captures the efficiency and reliability of the 

cognitive system, we will optimize the threshold   by minimizing the average sensing error 

probability ep  to balance the system efficiency and reliability. We have 
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Setting 0ep







, we can obtain the optimal threshold as 
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Then, the minimum sensing error probability is 
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3.2 Multiuser Sensing with Soft Information Fusion 

With soft information fusion strategy, FC1 receives 1 2, ,..., NY Y Y  from the distributed CR users, 

where N  is the number of CR users which are located within the region of cognitive network 

I and iY s are i.i.d. under both 0H  and 1H . Assume that the amplification factor is 1. So, in 

FC1, 
1

N

s i

i

Y Y


 , where „s‟ refers to soft information fusion. Since iY s are i.i.d., according to 

(3), we have 
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The false alarm and detection probabilities of cooperative spectrum sensing with soft 

information fusion are as follows 

 

0, 0 |

2
{ | } ( )

2
s

s

s
f s rob s s Y H

Nu
Q P Y H f y dy Q

Nu




  
     

 
                           (14) 

1, 1 |

2 2
{ | } ( )

2 ( 2 )
s

s

s
d s rob s s Y H

Nu N
Q P Y H f y dy Q

N u

 




   
     

  
                      (15) 

 

Accordingly, the average sensing error probability is , 0 , 1 ,( ) ( )(1 )e s f s d sQ p H Q p H Q   . 

Similarly, setting 
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, we can obtain the optimal threshold as 
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The minimum sensing error probability of cognitive network I with soft information fusion 

can be derived as 
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4. Cooperative Spectrum Sensing with Hard Information Fusion 

With the hard information fusion strategy, each CR user makes individual decision and then 

sends the “one bit” decision to FC1. After collecting all decisions, FC1 utilizes all “one bit” 

decisions to make a final decision according to the proposed fusion rules. Let   denotes the 

number of CR users reporting existence of PU1. In FC1, the final decision strategy may be 

expressed in the randomized rule 

if n      decide 1H  

if n      decide 1H  with probability   ( 0 1  , a coin with (head)rP   is tossed, and 

the decision is taken to be 1H  if the result is heads, and 0H  otherwise) 

if n      decide 0H  

where n  is an integer, and 1,2,...,n N  is the decision threshold at FC1,   indicates that FC1 

employs the randomized rule. The final false alarm probability and final detection probability 

are given by 
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1,2,...,n N  and it is defined that when n N  the first item of ,f hQ  and ,d hQ  is equal to 0. 

Under hard information fusion, there are two levels of decision making, each level having 

its own decision performance. Hence, to minimize the average sensing error probability 

, 0 , 1 ,( ) ( )(1 )e h f h d hQ p H Q p H Q   , we need to jointly choose both the optimal local decision 

threshold opt  at the energy detector and the optimal final decision threshold optn  at FC1. opt  

is derived according to section III. Our objective is to find the optimal n  to minimize the 

sensing error probability and do not introduce any extra overhead for second system. 

According to (18) and (19), we have 

 

, 0 , 1 ,

1

( ) ( )(1 )

( )

e h f h d hQ p H Q p H Q

A B p H

  

   
                                           (21) 

 

where 

 

   ( ) ( )

0 1

1

( ) (1 ) ( ) (1 )
N

i iN i N i

f f d d

i n

N
A p H p p p H p p

i

 

 

          
                   (22) 

   ( ) ( )

0 1( ) (1 ) ( ) (1 )
n nN n N n

f f d d

N
B p H p p p H p p

n

           
                    (23) 

 

Assume that N  is a fixed value, given n  ( n  is an integer, and 1,2,...,n N ), then A  and 

B  are fixed. In order to minimize the average sensing error probability, the problem is 

equivalent to 
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We have 
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Theorem 1: For fp  and dp  defined in (6) and (7), respectively, given a sampling size u , 
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Since ( )Q x  is a decreasing function of x , according to (32), we have d fp p , then 

1 1f dp p   . Therefore, ln( ) ln( )d fp p , ln(1 ) ln(1 )f dp p   . 

Then, ln( ) ln( ) ln(1 ) ln(1 ) 0d f f dp p p p      , Theorem 1 is proved. 

Therefore, according to (28), we have n  , where 
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Furthermore, the optimal final decision threshold optn  can be derived as 
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Therefore, in our proposed minimum sensing error (MSE) rule, the minimum average sensing 

error probability can be calculated by 
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5. Sensing Performances of CR Users within the Cross-over Region 

In the cross-over cognitive radio networks, FC1 and FC2 make final decision results to 

determine which channel to access for the CR users which are located in region C. These CR 

users can choose one licensed band to access either PU1 or PU2 is absent. When PU1 and PU2 

are both absent, they can access licensed band I or licensed band II with probability of 1
2

. In 

FCi ( 1,2i  ), we assume the final decision remark iD  ( 1D  denotes the final decision remark 

of cognitive network I, and 2D  denotes the final decision remark of cognitive network II) is 
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Assume that iS  denotes the activity of PUi ( 0iS  : PUi is absent; 1iS  : PUi is present; 

i 1,2 ). Now consider the sensing performances of the CR users which are located in region 

C. 

1) PU1 is present and PU2 is present, i.e., 1 21, 1S S  . According to the decision remarks 

1D  and 2D , in this case, the probability of false alarm is 
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The probability of missed detection is 
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2) PU1 is present and PU2 is absent, i.e., 1 21, 0S S  . According to the decision remarks 

1D  and 2D , in this case, the probability of false alarm is 
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The probability of missed detection is 
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3) PU1 is absent and PU2 is present, i.e., 1 20, 1S S  . According to the decision remarks 

1D  and 2D , in this case, the probability of false alarm is 
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The probability of missed detection is 
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4) PU1 is absent and PU2 is absent, i.e., 1 20, 0S S  . According to the decision remarks 

1D  and 2D , in this case, the probability of false alarm is 
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The probability of missed detection is 

 

,4 0C

mQ                                                                  (45) 

 

Therefore, the equivalent false alarm and missed detection probabilities for the CR users 

which are located in region C can be evaluated as 

 
C C C C C

f f,1 f,2 f,3 f,4

I II II I II I I II I II

1 0 f 0 1 f 0 0 f f

Q = Q + Q + Q + Q

= p(H )p(H )Q + p(H )p(H )Q + p(H )p(H )Q Q
                   (46) 

     

C C C C C

m m,1 m,2 m,3 m,4

I II I II I I II I II I II II I

1 1 d m m 1 0 m f 0 1 m f

Q = Q + Q + Q + Q

1 1
= p(H )p(H ) Q Q + Q + p(H )p(H )Q 1 + Q + p(H )p(H )Q 1 + Q

2 2
(47) 

6. Simulations 

6.1 Soft Information Fusion 

We first show the optimal performance of the energy detector with soft information fusion 

strategy, which is an important portion in cooperative spectrum sensing that has been little 

addressed. For single-user sensing and multiuser sensing with soft information fusion, we use 

the threshold by (10) and (16) to obtain the minimum average sensing error probability 

respectively. These probabilities are shown as the solid curves in Fig. 3. Then we change the 

decision threshold to 25   for single-user sensing and 25s N    for multiuser sensing 

with soft information fusion and obtain the dashed curves. By comparing the solid curves with 

the dashed curves, we can find that ep  with optimal threshold (10) is much lower than that 

with fixed threshold 25  . Then, for cooperative sensing with N  CR users, with soft 

information fusion strategy, ,e sQ  with optimal threshold (16) is also lower than that with fixed 

threshold 25s N   . 

In a CR network with a large number of cooperative partners, cooperative spectrum sensing 

may become impractical because in a time slot only one CR user should send its local decision 

to FC so as to separate decisions easily at FC. Hence, it may make the whole sensing time 

intolerably long. When the number of CR users tends to be very large, the bandwidth for 

reporting their sensing results to the fusion center will be very huge. To address this issue, we 

propose next an efficient sensing algorithm that guarantees a target error bound by requiring 

the least number of cooperated CR users in cooperative spectrum sensing instead of all of them. 

The bandwidth used by reporting channel can be saved. Now let us look an example of the 

proposed efficient sensing algorithm in a network with a total of 50 CR users illustrated in Fig. 

4. We can generate Fig. 4 according to ,e sQ  with respect to various N  when the optimal 
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threshold 
,s opt  is applied. Setting , 0.01e sQ  , we find that the least numbers of CRs to get the 

target error bound are 8, 18 and 40 for SNR values of 8, 6 and 4 dB, respectively. This 

indicates that it is sufficient to employ minimal cooperation to obtain a required QoS (Quality 

of Sensing). 
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Fig. 3. Single user sensing and multiuser sensing with soft information fusion strategy ( 10N  ) in 

cognitive network I. Solid curves: optimal threshold; Dashed curves: fixed threshold 25  ; 

25s N   ; 
I

0( ) 0.7p H  . 
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Fig. 4. Average sensing error probability versus number of cooperated CR users in cognitive network I 

with SNR=4, 6, 8 dB; optimal soft information fusion strategy applied; 
I

0( ) 0.7p H  . 

6.1 Hard Information Fusion 

With hard information fusion strategy, n  in Half-voting rule is 
2

N 
 

 consistently regardless 
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of the values of fp  and dp  [9]. In Fig. 5, it has been shown that the final probability of false 

alarm in MSE rule is noticeable smaller than that in single-user scheme and multiuser sensing 

with Half-voting rule. Especially when the individual probability of false alarm is very large, 

for example, 0.8fp  , the final probability of false alarm is 0.8 in single-user scheme and is 

close to 1 in Half-voting rule. However, in MSE rule, the final probability of false alarm is 

only 0.1. This indicates that the performance of the final probability of false alarm can be 

greatly improved with a big value of the individual probability of false alarm in MSE rule. 

In Fig. 6, it has been shown that MSE rule also improves the final probability of detection. 

Especially when the individual probability of detection is small, the performance of detection 

can be greatly improved compared with the single-user scheme and Half-voting rule. Another 

merit we derived in MSE rule is to quicken the asymptotic rate of convergence, so MSE rule 

greatly improves the performance of detection probability.  
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Fig. 5. ,f hQ as functions of fp  under AWGN environment for different decision rules; 10N  ; 

10SNR dB . 
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Fig. 6. ,m hQ as functions of dp  under AWGN environment for different decision rules; 10N  ; 

10SNR dB . 
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As indicated in Fig. 5 and Fig. 6, ,f hQ  in Half-voting rule is larger than that in single-user 

scheme when 0.42fp   and the performance of detection probability is also worse when 

0.42dp  . Hence, Half-voting rule cannot show better performance for different objectives. 

Contrastingly, MSE rule appropriately improves both the final false alarm probability and 

detection probability simultaneously. Moreover, it obviously improves the related sensing 

outcomes to achieve different optimization objectives. In addition, it has been shown that there 

exists some sawtooths in Fig. 5 and Fig. 6. The reason is that in MSE rule, the final decision 

threshold is an integer     and   is adaptive to the local threshold of the energy detector. 

6.3 Performance Comparisons 
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Fig. 7. Average sensing error probabilities under five strategies in cognitive network I; 21  for 

strategy 4 and strategy 5; 10N  ; 
I

0( ) 0.7p H  . 
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Fig. 8. Average sensing error probabilities under five strategies in cognitive network I; 21  for 

strategy 4 and strategy 5; 8SNR dB ; 
I

0( ) 0.7p H  . 

To illustrate the relative performances of various decision strategies, we show in Fig. 7 and 

Fig. 8 five strategies of multiuser sensing, i.e., Strategy 1: optimal soft information fusion; 
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Strategy 2: hard information fusion with locally optimal threshold and MSE rule; Strategy 3: 

hard information fusion with locally optimal threshold and Half-voting rule; Strategy 4: hard 

information fusion with locally fixed threshold ( 21  ) and MSE rule; Strategy 5: hard 

information fusion with locally fixed threshold ( 21  ) and Half-voting rule. 

It has been shown in Fig. 7 that strategy 1 provides a theoretical bound on the performance 

of average sensing error probability in an ideal cooperative sensing setup. Under hard 

information fusion, the performance of our proposed strategy (strategy 2) is suboptimal among 

the five strategies since the local threshold of energy detector and the final decision threshold 

are both optimal. Strategy 3 and strategy 4 optimize only one level of decision making, namely, 

either the local threshold of energy detector or the final decision threshold. Thus, the average 

sensing error probability is larger than strategy 2. In strategy 5, since the local threshold and 

the final decision threshold are both fixed values, the sensing performance is the worst among 

five strategies. 

The simulations in Fig. 8 match the analysis from Fig. 7. In addition, from Fig. 8, it has 

been shown that spectrum sensing performance of strategy 1 and strategy 2 can be greatly 

improved with an increase of the number of cooperative partners. In strategy 5, the average 

sensing error probability is almost unaltered when N  is larger than 30. This is because both 

the local threshold and the final decision threshold in strategy 5 are fixed values regardless of 

the values of fp  and dp  and the related sensing performance is bad. In addition, it has been 

shown that there exists some sawtooths in strategy 2 and strategy 4. The reason is that MSE 

rule is employed and the final decision threshold is an integer    . 

6.4 Sensing Performances of CR Users within the Cross-over Region 

In practical cognitive radio networks, the soft information fusion strategy is not achievable. So 

we employed the hard information fusion strategy in the cross-over cognitive radio networks. 

FC1 and FC2 make final decision results to determine which channel to access for the CR 

users which are located in region C. These CR users can choose one licensed band to access 

either PU1 or PU2 is absent. As illustrated in Fig. 9 and Fig. 10, in region C, our proposed 

MSE rule also greatly improves the sensing performances for the SUs within the cross-over 

region. 

We show in Fig. 9 and Fig. 10 four schemes in the cross-over cognitive radio networks, i.e., 

Scheme 1: cognitive network I: MSE rule and cognitive network II: MSE rule; Scheme 2: 

cognitive network I: MSE rule and cognitive network II: Half-voting rule; Scheme 3: cognitive 

network I: Half-voting rule and cognitive network II: MSE rule; Scheme 4: cognitive network 

I: Half-voting rule and cognitive network II: Half-voting rule. 

As indicated in Fig. 9, since MSE rule is employed in both the two cognitive networks, 

scheme 1 has the best sensing performance, the final probability of false alarm is noticeable 

smaller than that in other schemes. Since scheme 2 and scheme 3 choose MSE rule in one 

cognitive network and Half-voting rule in another cognitive network, the final probability of 

false alarm is a little larger than that in scheme 1. Contrastingly, scheme 4 has the worst false 

alarm probability performance since Half-voting rule is employed in both the two cognitive 

networks. For example, when 16  , 0.02C

fQ   in scheme 1; 0.27C

fQ   in scheme 2; 

0.15C

fQ   in scheme 3; 0.92C

fQ   in scheme 4.  
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Fig. 9. False alarm probability versus threshold of energy detector in region C; hard information fusion 

strategy applied; 10SNR dB ; 10N  ; 20K  ; 
I

0( ) 0.7p H  ; 
II

0( ) 0.8p H  . 

In Fig. 10, scheme 1 also has the best detection performance among the four schemes. In 

low   region, 14 ~ 22 , as shown in Fig. 9, the final probability of false alarm with scheme 2 

is larger than scheme 3. However, in high   region, 34 ~ 48 , as shown in Fig. 10, the final 

probability of missed detection with scheme 2 is lower than scheme 3. This is because both 

scheme 2 and scheme 3 choose MSE rule in one cognitive network and Half-voting rule in 

another cognitive network. Consequently, our proposed MSE rule optimizes the sensing 

performance for each CR user which is randomly distributed in the cross-over cognitive radio 

networks. 
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Fig. 10. Missed detection probability versus threshold of energy detector in region C; hard information 

fusion strategy applied; 10SNR dB ; 10N  ; 20K  ; 
I

0( ) 0.7p H  ; 
II

0( ) 0.8p H  . 

7. Conclusion 

We consider the optimal strategy of cooperative spectrum sensing with soft information fusion 
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and hard information fusion in multiple cross-over cognitive radio networks. It has been found 

that the optimal local threshold of the energy detector and the optimal decision threshold are 

related to SNR of the CR users. The optimal soft information fusion provides a theoretical 

bound on error probability performance in an ideal cooperative sensing setup. With hard 

information fusion strategy, MSE rule appropriately improves both the final false alarm 

probability and detection probability simultaneously. By simulations, our proposed strategy 

optimizes the sensing performance for each CR user which is randomly distributed in the 

multiple cross-over cognitive radio networks. 
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