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Abstract 

Traffic flow prediction is of great significance in urban planning and traffic management. As the 

complexity of urban traffic increases, existing prediction methods still face challenges, especially for the 

fusion of spatiotemporal information and the capture of long-term dependencies. This study aims to use the 

fusion model of graph neural network to solve the spatio-temporal information fusion problem in traffic flow 

prediction. We propose a new deep learning model Spatio-Temporal Information Fusion using Graph 

Neural Networks (STFGNN). We use GCN module, TCN module and LSTM module alternately to carry out 

spatiotemporal information fusion. GCN and multi-core TCN capture the temporal and spatial dependencies 

of traffic flow respectively, and LSTM connects multiple fusion modules to carry out spatiotemporal 

information fusion. In the experimental evaluation of real traffic flow data, STFGNN showed better 

performance than other models. 

 
Keywords: Time Dependence; Spatial Dependence; Long-term Dependence; Deep Fusion Model; Traffic Prediction 

Model. 

 

1. INTRODUCTION  

Transportation systems play a vital role in modern society. Traffic flow prediction can effectively manage 

traffic, ensure mobility, reduce congestion, and strengthen transportation infrastructure. However, due to the 

complexity and dynamics of traffic patterns in cities, accurate and reliable traffic flow prediction remains a 

challenging task. 

Traditional methods are usually difficult to capture the complex spatiotemporal dependencies in traffic 

data. With the development of neural network technology, deep learning has made many significant 

achievements in obtaining complex nonlinear relationships in spatiotemporal data [1]. Graph convolutional 

neural network (GCN) can extend convolution operations to graph structure data in non-Euclidean space, and 

can well handle complex traffic network structure graph data [2]. Most of the existing traffic predictions 

have achieved good results in short-term predictions, but the long-term prediction effects still need to be 

improved. HixHop [3] obtains different order information based on GCN to mix different neighborhood 

information to obtain spatiotemporal features. The prediction effect is greatly improved, especially for 

short-term effects. TCN [4] is a temporal convolutional network that can effectively obtain time-dependent 
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features. GWnet [5] uses GCN and TCN, stacked as different modules, and short-term prediction has been 

significantly improved. T-GCN [6] further uses GCN combined with gated recursive units to improve 

long-term prediction of traffic prediction. MTGNN [7] optimizes the graph structure and combines the 

advantages of HixHop and TCN to obtain the spatiotemporal characteristics of traffic spatiotemporal data, 

improving short-term and medium-term predictions. To further improve the effect of longer-term traffic 

prediction, we propose a Spatio-Temporal Information Fusion Graph Neural Network (STFGNN).  

First, we propose a multi-model fusion approach to capture spatiotemporal correlations more 

comprehensively. It uses GCN adaptive composition to capture the spatial dependence characteristics of 

traffic flow and uses TCN multi-convolution kernel fusion to capture the time-dependence characteristics of 

traffic flow. The fusion module of GCN and TCN can not only capture spatial dependencies more deeply, 

but also capture temporal dependencies more comprehensively. The fusion model of GWnet [5] based on 

simple distance composition only performs simple model stacking when fusing TCN, which cannot capture 

spatiotemporal correlation more effectively and comprehensively. 

Secondly, we propose a new spatio-temporal information fusion method to capture longer-term 

spatio-temporal correlations. It takes advantage of LSTM [8] and adds LSTM between each fusion module, 

which can learn and feature fusion of sequence data through the long short-term memory mechanism, 

thereby effectively capturing long-term dependencies and timing information in the sequence. Through jump 

connections, multiple fusion modules are connected to perform spatio-temporal information fusion. Simple 

module stacking and single modules separate the spatiotemporal correlation and have poor effect on 

long-term traffic flow prediction. For example, STGCN [9] uses separate modules when extracting spatial 

and temporal dependencies, which is very detrimental to long-term spatiotemporal information fusion. 

The main contributions of this paper are summarized as follows: 

1. We consider the spatio-temporal correlation characteristics of traffic flow data and propose a 

multi-model fusion method to capture the spatio-temporal correlation in a deeper manner. 

2. Considering the complex and changing spatiotemporal information of traffic flow, we propose a new 

spatiotemporal information fusion method to capture longer spatiotemporal correlations. 

3. We propose a new deep learning model, Spatio-Temporal Information Fusion using Graph Neural 

Networks (STFGNN), which can obtain longer spatiotemporal dependencies. 

4. We used real multi-city traffic flow data set for verification. Compared with the existing baseline 

model, our model STFGNN has improved in both short - and long-term prediction, especially in long-term 

prediction. 

 

2. Related Work 

Spatiotemporal prediction refers to the process of predicting specific phenomena or events in time and 

space. It involves modeling and predicting the changes and developments of things in time and space 

dimensions to infer possible situations or trends in the future. Spatiotemporal prediction has a wide range of 

application scenarios in the real world, and traffic prediction is a typical application scenario of 

spatiotemporal prediction. Traditional traffic forecasting completes forecasting by driving models, such as 

historical average (HA), autoregressive integrated moving average (ARIMA) [10] and vector autoregressive 

(VAR) [11] and other models. These models are suitable for linear data analysis and have very low 

prediction accuracy for the prediction of nonlinear traffic flow data. In order to solve complex non-linear 
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data, traditional machine learning methods are used for traffic prediction, such as support vector regression 

(SVR) [12] and random forest regression (RFR) [13], although these models can handle high-dimensional 

complex nonlinear relationships, it becomes difficult and time-consuming to deal with large-scale traffic 

flow data sets. Deep learning utilizes more features and complex architectures to handle large-scale and 

complex spatio-temporal data. Recurrent Neural Network (RNN) [14] and its enhanced version LSTM [15], 

GRU [16] can handle the time dependence of time series, but cannot handle the dependence of spatial 

dimension nodes. Convolutional neural network (CNN) [17] can obtain traffic spatial dependence in a 

gridded manner in Euclidean space. Traffic network is an irregular graph structure, and the way of grid 

division cannot well represent the traffic network structure. Graph convolutional neural network (GCN) [18] 

has been widely used in traffic prediction, and has received much attention in the extraction of spatial 

dependency relationships.  

GCN can model in non-Euclidean space to capture the correlation between spatial nodes. FastGCN [19] 

samples each convolutional layer and samples a certain number of nodes, but the connections between layers 

are sparse. Cluster-GCN [20] samples subgraphs through adaptive sampling, but when sampling subgraphs, 

neighborhood search is subject to certain limitations. NetGAN [21] uses random walks to generate new 

graphs. Since the graph is generated in a global way, it suffers from certain limitations when generating large 

graphs with many traffic data nodes. WaveNet [5] uses an adaptive method to automatically learn the 

structure of static graphs. In transportation networks, it is necessary to potentially learn the dependencies of 

dynamic spaces. ASTGCN [22] dynamically learns the spatial dependence between nodes based on CNN, 

but under the influence of external information, the efficiency of obtaining node features decreases. MixHop 

[3] is based on GCN to mix the features of different neighbors to obtain different order information, which 

can better capture the dependency features of spatial nodes, but in the time dimension, it cannot capture the 

time dependence features well. Graph Wave [5] captures the spatiotemporal dependence of the traffic 

network structure by gating TCN and stacking GCN at the same time. However, fixed convolution kernel is 

used in cross-layer information transmission, resulting in certain limitations in local feature learning of 

global kernel. MTGNN [7] carried out convolution operations based on the hybrid jump method through 

adaptive composition, stacked the initial TCN structure of multiple convolution cores, and completed the 

dynamic and static feature extraction of feature graphs through cross-graph connection. However, in the 

multi-level structure, local information capture was insufficient. 

 

3. Methodology 

3.1 Problem Definition 

This paper mainly studies traffic flow prediction. Let 𝑧𝑡 ∈ R𝑁 be the value of a multi-variable with 

dimension N at time step t, and the value of the i-th variable at time step t is represented as 𝑧𝑡[𝑖] ∈ 𝑅. Given 

the multivariate observation sequence X = {zt1, zt2, zt3, . . . ztm
} of the traffic historical sequence m time 

steps, predict the traffic flow Y = {ztm+1, ztm+2, ztm+3, . . . ztm+n
} of n time steps in the future. We define 

some traffic flow prediction problems, described as follows: 

Definition 1: Traffic network graph structure. G = (V, E) represents the traffic network graph structure. 

Where V represents the set of nodes, which is the set of all traffic monitoring points, and E represents the set 

of edges, which is the connection relationship between monitoring points. The number of nodes in the traffic 

network is represented by N. 
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Definition 2: Traffic node neighborhood. Let e = (q, p) ∈ E, denote an edge from q to p, where q ∈ V 

denotes a node. The neighborhood of node q is denoted as N(q) = {p ∈ V|(q, p) ∈ E}. 

Definition 3: Traffic network adjacency matrix. The adjacency matrix is a method of using a matrix to 

represent the graph structure, defined as A ∈ RN×N, if (𝑞𝑖 , 𝑞𝑗) ∈ 𝐸, then A𝑖𝑗 = 𝑐 > 0, if (𝑞𝑖 , 𝑞𝑗) ∉ 𝐸, 

then A𝑖𝑗 = 0.  

 

 

Figure 1. The framework of STFGNN 

3.2 Framework 

We provide the overall framework structure diagram of STFGNN in Figure 1. In the framework structure 

diagram, the input of traffic flow is first mapped to the latent space through a standard convolution of 1. 

Then, the temporal convolution module, the graph convolution module and the LSTM module alternate with 

each other. The temporal convolution module captures the temporal dependence more deeply, and the graph 

convolution module captures the spatial dependence more deeply. The addition of the LSTM module 

captures the long-term dependencies in the traffic flow input sequence, dynamically adjusts and updates the 

sequence features, and better adapts to the graph convolution module to extract features. In the temporal 

convolution module, the parameters that control the size of the receptive field are controlled, and the 

expansion factor d increases exponentially with k. In the model, residual connections are added to each graph 

convolution module, and skip connections are added after each temporal convolution module to alleviate the 

problem of gradient disappearance. Finally, the features of the hidden layer are mapped to the required 

dimensions through the output module, and the result is output.  

3.3 Graph Convolution Module 

We use graph learning layers to adaptively learn graph adjacency matrices. In existing studies, most 

researchers use distance to find similarities between nodes, and the distance measurement is bidirectional 

[23], which limits the efficiency of the model in processing larger graphs. Since the scale of the traffic 

network map is relatively large, we use one-way distance measurement to compose the map. The 

composition process is as follows: 
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V1 = 𝑡𝑎𝑛ℎ(𝛾𝐸1ℳ1), V2 = 𝑡𝑎𝑛ℎ(𝛾𝐸2ℳ2),         (1) 

A = 𝑅𝑒𝑙𝑢 (𝑡𝑎𝑛ℎ(𝛾(V1V2
𝑇 − V2V1

𝑇)))    (2) 

where V1 and V2 represent node embedding and random initialization, ℳ1 and ℳ2 are parameters that 

can be learned during the model learning process, and 𝛾 is a hyperparameter that can control the saturation 

rate of the activation function. Formula 2 can generate an adjacency matrix with asymmetric properties. 

 

 

Figure 2. Graph Convolution Module 

 

The graph convolution module mainly integrates the information of neighbor nodes with the node's own 

information to extract the spatial dependence of the traffic network. We use hybrid hop information 

propagation to complete information fusion. As shown in Figure 2, the inflow and outflow information of 

each node is processed through two hybrid hop layers, and finally the layer information is aggregated. The 

process of hybrid hop information propagation is defined as follows: 

𝐻(𝐿) = 𝜀𝐻𝑖𝑛 + (1 − 𝜀)ÃH(𝐿−1),         (3) 

𝐻𝑜𝑢𝑡 = ∑ 𝐻(𝐿)𝑊(𝐿)𝐿
𝑖=0     (4) 

where 𝜀 represents the hyperparameter that controls the ratio of the original state of the root node, L is the 

depth of information propagation, Formula 4 represents the process of information selection, and 𝑊(𝐿) is a 

parameter matrix as a feature selector. 𝐻𝑖𝑛 indicates that the hidden state of the previous layer is the current 

input, and 𝐻𝑜𝑢𝑡 is the hidden state of the current output.𝐻(0) = 𝐻𝑖𝑛, Ã = D̃−1(A + I),𝐷̃𝑖𝑖 = 1 + ∑ A𝑖𝑗𝑗 . 

3.4 Temporal Convolution Module 

The temporal convolution module consists of dilated convolutions of different convolution kernels to 

form a dilated inception layer, and then the inception layer completes the filtering of information through the 

gating mechanism, as shown in Figure 3. The selection of multiple convolution kernels can capture a wider 

range of information through different convolution kernel sizes. We choose a convolution kernel with a size 

of 2,3,6,7 that can also cover the time period, such as representing a period of 8, and the model can pass 

through an inception layer with a convolution kernel size of 3 and then through an inception layer with a 
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convolution kernel size of 6. The form in which we dilated inception layer is as follows:  

x = 𝑐𝑜𝑛𝑐𝑎𝑡(x ∗ g1×2, x ∗ g1×3, x ∗ g1×6, x ∗ g1×7),         (5) 

x ∗ g1×k(t) = ∑ g1×k(s)(t−d×s)
k−1
s=0     (6) 

where x ∈ RT  is a one-dimensional input sequence, and g1×2 ∈ R2 ,g1×3 ∈ R3 ,g1×6 ∈ R6 ,g1×7 ∈ R7 

represents filters with different convolution kernel sizes. x ∗ g1×k(t)  represents dilated convolution, and d 

is the dilation factor. 

 

 

Figure 3. Temporal Convolution Module 

3.5 LSTM Module 

LSTM helps the network better handle the balance between long-term memory and short-term changes. 

Located among several Graph Convolution and Temporal Convolution modules, LSTM can receive the 

outputs of these modules as input sequences and learn the sequence data and integrate features through its 

long- and short-term memory mechanism, thus effectively capturing the long-term dependencies in the 

sequences. As shown in Figure 4, LSTM uses three gates to control the flow of information, namely input 

gate, forgetting gate and output gate. The process is described as follows: 

g𝑓 = 𝜎(𝑤𝑓[ℎ𝑡−1, x̂𝑡] + 𝑏𝑓) ,         (7) 

𝑖𝑡 = 𝜎(𝑤𝑖[ℎ𝑡−1, x̂𝑡] + 𝑏𝑖) ,   (8) 

𝑐𝑡̀ = 𝑡𝑎𝑛ℎ(𝑤𝑐[ℎ𝑡−1, x̂𝑡] + 𝑏𝑐) ,  (9) 

𝑐𝑡 = g𝑓𝑐𝑡−1 + 𝑖𝑡𝑐𝑡̀ ,  (10) 

𝑜𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, x̂𝑡] + 𝑏𝑜) ,  (11) 

ℎ𝑡 = 𝑜𝑡𝑡𝑎𝑛ℎ(𝑐𝑡)   (12) 

where g𝑓  represents the forget gate, 𝑖𝑡  represents the input gate, 𝑐𝑡  represents the gating unit, 𝑜𝑡 

represents the output gate, and ℎ𝑡 represents the final output. 𝑤𝑓 and 𝑏𝑓 are the parameters that can be 
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learned by the forgetting gate, 𝑤𝑖 and 𝑏𝑖 are the parameters that can be learned by the input gate, 𝑤𝑐 and 

𝑏𝑐 are the parameters that can be learned by the gate control unit, and 𝑤𝑜 and 𝑏𝑜 are the parameters that 

can be learned by the output gate. 𝜎(∗) and 𝑡𝑎𝑛ℎ(∗) are the activation functions. 

 

 

Figure 4. LSTM Module 
 

4. Experiments 

4.1 Experimental Setup 

Our experimental data uses the public real traffic flow data set for experiments. We conduct verification 

on the Metr-LA public dataset, which is provided by Uber and records traffic sensor data in the Los Angeles 

area. We choose 207 sensors as 207 nodes, and the recorded data is collected every 30 seconds. Before 

model training, the 30 seconds of data are aggregated into a 5-minute time step, and the data set is divided, 

70% of the data is used for training, 20% is used for testing, and 10% is used for verification. 

Use Pytorch to run on GPU, Batch size is set to 64, initial learning rate is set to 0.001, and the number of 

iterations of all models is 100.We use 3 graph convolution modules, the graph convolution module and the 

time convolution module are set to 32 output channels, and the number of layers of the time convolution 

module is set to 3. In formula 3, ε is set to 0.5, and the depth L of the hybrid jump propagation layer in 

formula 4 is set to 5. When we evaluate the model, we use the more commonly used evaluation indicators 

MAE, RMSE and MAPE. 

3.5 Experimental Results 

We use different baseline models to compare with our model. The baseline models compared with our 

model are DCRNN [23], STGCN [9], GWnet [5], ST-MetaNet [24], MTGNN [7]. The experimental results 

of the model are shown in Table 1. 

 

Table 1. Comparison of prediction performance between STFGNN and baseline models. 

Model Horizon 3 Horizon 6 Horizon 12 
 MAE  RMSE  MAPE MAE  RMSE  MAPE MAE  RMSE  MAPE 
STFGNN 2.68    5.16   6.85% 3.04    6.15   8.18% 3.40   7.20    9.70% 
MTGNN 2.69    5.18   6.86% 3.05    6.17   8.19% 3.49   7.23    9.87% 
DCRNN 2.77    5.38   7.30% 3.15    6.45   8.80% 3.60   7.60   10.50% 
STGCN 2.88    5.74   7.62% 3.47    7.24   9.57% 4.59   9.40   12.70% 
GWnet 2.69    5.15   6.90% 3.07    6.22   8.37% 3.53   7.37   10.01% 
ST-MetaNet 2.69    5.17   6.91% 3.10    6.28   8.57% 3.59   7.52   10.63% 
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Our model STFGNN performs well compared with similar models. Compared with the DCRNN and 

STGCN models that perform static graph calculations, STFGNN uses dynamic graph calculations to show 

excellent prediction performance in long-term, medium-term and short-term predictions. Compared with the 

model ST-MetaNet, which uses a self-attention mechanism to adjust the calculation method of static images, 

our model still has excellent prediction performance. Compared with the adaptive composition model GWnet, 

STFGNN still shows the best performance in medium and long-term prediction because GWnet still needs to 

be combined with static graph calculations while adaptive composition. Compared with the MTGNN model, 

although the composition method is the same, our model uses LSTM to adjust different modules, and the 

performance of short-term, medium-term, and long-term predictions is still improved, especially in long-term 

prediction, the performance improvement is outstanding. 

 

     
Figure 5. Comparison of MAE and RMSE in different baseline models. 

 

To further illustrate the good performance of our model compared to the same baseline model, we made 

further comparisons, as shown in Figure 5. In the figure, the model STFGNN, which we can observe more 

clearly, is represented by the blue bar chart, showing the best results in both MAE and RMSE. In particular, 

the MAE and RMSE results of STFGNN are more prominent in long-term prediction. 

 

5. Conclusion 

In this paper, we address the problem of insufficient long-term memory capture of long-term 

spatiotemporal correlation in traffic prediction, taking advantage of the spatial dependence of GCN, the 

temporal dependence of TCN, and the advantages of LSTM with long-term memory function. 

Spatio-Temporal Information Fusion using Graph Neural Networks (STFGNN) is proposed. To capture the 

spatio-temporal correlation more deeply, we use multi-model fusion to deeply capture the spatio-temporal 

dependence of traffic flow. To deal with the complex spatiotemporal correlation of traffic flow, we propose a 

new spatiotemporal information fusion method that can capture longer spatiotemporal dependencies. We 

evaluated the model in real traffic flow data. Compared with similar models, STFGNN showed excellent 

performance, especially in long-term traffic flow prediction. In future work, we will further explore the 

optimization of different modules to make the neural network more flexible in application. 
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