• 제목/요약/키워드: function differential equation

검색결과 362건 처리시간 0.028초

REAL WEIGHT FUNCTIONS FOR THE CIRCLE POLYNOMIALS BY THE REGULARIZATION

  • Lee, J.K.;Lee, C.H.;Han, D.H.
    • Journal of applied mathematics & informatics
    • /
    • 제28권1_2호
    • /
    • pp.473-485
    • /
    • 2010
  • We consider the differential equation $$(x^2\;-\;1)u_{xx}\;+\;2xyu_{xy}\;+\;(y^2\;-\;1)u_{yy}\;+\;gxu_x\;+\;gyu_y\;=\;\lambda_nu,\;(*)$$ where $\lambda_n\;=\;n(n\;+\;9\;-\;1)$. We show that the differential equation (*) has a polynomial set as solutions if $g\;{\neq}\;-1$, -3, -5, $\cdots$. Also, we construct an orthogonalizing distributional weight for g < 1 and $g\;{\neq}\;1$, 0, -1, $\cdots$ by regularizing a one-dimensional integral with a singularity on the endpoint of the interval.

Bi-2212 고온초전도체 튜브의 자기확산에 관한 연구 (An experimental study of magnetic diffusion in Bi-2212 High-Tc supercondutor tube)

  • 정성기;설승윤
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제5권2호
    • /
    • pp.66-70
    • /
    • 2003
  • Transient magnetic diffusion process in a melt-cast Bi2Sr2CaCu20X(Bi-2212) tube was studied by experimental and numerical analyses. The transient diffusion partial differential equation is transformed into an ordinary differential equation by integral method. The penetration depth of magnetic field into a superconducting tube is obtained by solving the differential equation numerically. The results show that the penetration depth as a function of time which is somewhat different from the results by Bean's critical state model. The reason of the difference between the present results and that of Bean's model is discussed and compared in this paper. This experiment measure the magnetic flux density in the supercondutor after supply direct-current of Bi-2212 rounded by copper coil. This study was discussed of valid of a previous numerical solution which is compared by the penetrate time and the magnetic flux density difference of between the present results and the numerical solution.

고온 초전도체 관에서의 과도 자기확산 해석 (Analysis of Transient Magnetic Diffusion in a High-Temperature Superconductor Tube)

  • 설승윤;정성기
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.991-996
    • /
    • 2002
  • Transient magnetic diffusion process in a melt-cast BSCCO-2212 tube is analyzed by an analytical method. The transient diffusion partial differential equation is transformed into an ordinary differential equation by integral method. The penetration depth of magnetic field into a superconducting tube is obtained by solving the differential equation numerically. The results show that the penetration depth as a function of time which is somewhat different from the results by Bean's critical state model. The reason of the difference between the present results and that of Bean's model is discussed and compared in this paper.

軸引張力을 받는 變斷面 보의 自由振動 (Free Vibration of Tapered Beams Under Tensile Axial Force)

  • 이병구;김연태;모정만
    • 한국농공학회지
    • /
    • 제34권1호
    • /
    • pp.57-65
    • /
    • 1992
  • The main purpose of this paper is to present both the natural frequencies and mode shapes of tapered beams under tensile axial force. The differential equation governing planar free vibration for tapered beams under tensile axial force is derived as nondimensional form. The three kinds of cross sectional shape are considered in differential equation. The Runge-Kutta method and Determinant Search method are used to perform the integration of the differential equation and to determine the natural frequencies, respectively. The hinged-hinged, hinged-clamped, clamped-clamped and constraints are applied in numerical examples. The lowest four nondimensional natural frequencies are reported as the function of nondimensional tensile axial force. The fundamental natural frequencies are presented when section ratios and nondimensional axial forces are varied. The effects of cross sectional shapes are reported and some typical mode shapes are also presented.

  • PDF

Vibration of elastically supported bidirectional functionally graded sandwich Timoshenko beams on an elastic foundation

  • Wei-Ren Chen;Liu-Ho Chiu;Chien-Hung Lin
    • Structural Engineering and Mechanics
    • /
    • 제91권2호
    • /
    • pp.197-209
    • /
    • 2024
  • The vibration of elastically supported bidirectional functionally graded (BDFG) sandwich beams on an elastic foundation is investigated. The sandwich structure is composed of upper and lower layers of BDFG material and the core layer of isotropic material. Material properties of upper and lower layers are assumed to vary continuously along the length and thickness of the beam with a power-law function. Hamilton's principle is used to deduce the vibration equations of motion of the sandwich Timoshenko beam. Then, the partial differential equation of motion is spatially discretized into a time-varying ordinary differential equation in terms of Chebyshev differential matrices. The eigenvalue equation associated with the free vibration is formulated to study the influence of various slenderness ratios, material gradient indexes, thickness ratios, foundation and support spring constants on the vibration frequency of BDFG sandwich beams. The present method can provide researchers with deep insight into the impact of various geometric, material, foundation and support parameters on the vibration behavior of BDFG sandwich beam structures.

A NOTE ON LINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS

  • Choi, Sung Kyu;Koo, Namjip
    • 충청수학회지
    • /
    • 제28권4호
    • /
    • pp.583-590
    • /
    • 2015
  • This paper deals with linear impulsive fractional differential equations involving the Caputo derivative with non-integer order q. We provide exact solutions of linear impulsive fractional differential equations with constant coefficient by mean of the Mittag-Leffler functions. Then we apply the exact solutions to improve impulsive integral inequalities with singularity.

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.