References
- Arboleda-Monsalve, L.G., Zapata-Medina, D.G. and Dari'o Aristizabal-Ochoa, J. (2008), "Timoshenko beam-column with generalized end conditions on elastic foundation: Dynamicstiffness matrix and load vector", J. Sound Vib., 310, 1057-1079. https://doi.org/10.1016/j.jsv.2007.08.014.
- Belabed, Z., Tounsi, A., Bousahla, A.A., Tounsi, A., Bourada, M. and Al-Osta, M.A. (2024), "Free vibration analysis of BiDirectional Functionally Graded Beams using a simple and efficient finite element model", Struct. Eng. Mech., 90, 233-252. https://doi.org/10.12989/sem.2024.90.3.233.
- Benaberrahmane, I., Mekerbi, M., Bouiadjra, R.B., Benyoucef, S., Selim, M.M., Tounsi, A. and Hussain, M. (2021), "Analytical evaluation of frequencies of bidirectional FG thick beams in thermal environment and resting on different foundation", Struct. Eng. Mech., 80(4), 365-375. https://doi.org/10.12989/sem.2021.81.4.365.
- Bennai, R., Atmane, H.A. and Tounsi, A. (2015), "A new higherorder shear and normal deformation theory for functionally graded sandwich beams", Steel Compos. Struct., 19(3), 521-546. https://doi.org/10.12989/scs.2015.19.3.521.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Rev., 60, 195-216. https://doi.org/10.1115/1.2777164.
- Birman, V. and Kardomateas, G.A. (2018), "Review of current trends in research and applications of sandwich structures", Compos. Part B, 142, 221-240. https://doi.org/10.1016/j.compositesb.2018.01.027.
- Calim, F.F. (2016), "Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation", Compos. Part B: Eng., 103, 98-112. https://doi.org/10.1016/j.compositesb.2016.08.008.
- Chen, W.R. (2020), "Vibration analysis of axially functionally graded tapered Euler-Bernoulli beams based on Chebyshev collocation method", Int. J. Acoust. Vib., 25, 436-444. https://doi.org/10.20855/ijav.2020.25.31680
- Chen, W.R. and Chang, H. (2018), "Vibration analysis of functionally graded Timoshenko beams", Int. J. Struct. Stab. Dyn., 18, 1850007. https://doi.org/10.1142/S0219455418500074.
- Chen, W.R. and Chang, H. (2021), "Vibration analysis of bidirectional functionally graded Timoshenko beams using Chebyshev collocation method", Int. J. Struct. Stab. Dyn., 21, 2150009. https://doi.org/10.1142/S0219455421500097.
- Comez, I., El-Borgi, S., Kahya, V. and Erdol, R. (2016), "Receding contact problem for two-layer functionally graded media indented by a rigid punch", Acta Mechanica, 227, 2493-2504. https://doi.org/10.1007/s00707-016-1648-8.
- Comez, I., Kahya, V.O.L.K.A.N. and Erdol, R. (2018), "Plane receding contact problem for a functionally graded layer supported by two quarter-planes", Arch. Mechanica, 70, 485-504. https://doi.org/10.24423/aom.2846.
- Ebrahimi, F. and Farazmandnia, N. (2017), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 24, 820-829. https://doi.org/10.1080/15376494.2016.1196786.
- Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
- Huynh, T.A., Lieu, X.Q. and Lee, J. (2017), "NURBS-based modeling of bidirectional functionally graded Timoshenko beams for free vibration problem", Compos. Struct., 160, 1178-1190. https://doi.org/10.1016/j.compstruct.2016.10.076.
- Kahya, V. and Turan, M. (2017), "Finite element model for vibration and buckling of functionally graded beams based on the first-order shear deformation theory", Compos. Part B: Eng., 109, 108-115. https://doi.org/10.1016/j.engstruct.2014.01.029.
- Kahya, V. and Turan, M. (2018), "Vibration and stability analysis of functionally graded sandwich beams by a multi-layer finite element", Compos. Part B: Eng., 146, 198-212. https://doi.org/10.1016/j.compositesb.2018.04.011.
- Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos. Struct., 174, 70-86. https://doi.org/10.1016/j.compstruct.2017.04.046.
- Karamanli, A. and Aydogdu, M. (2019), "Size dependent flapwise vibration analysis of rotating two-directional functionally graded sandwich porous microbeams based on a transverse shear and normal deformation theory", Int. J. Mech. Sci., 159, 165-181. https://doi.org/10.1016/j.ijmecsci.2019.05.047.
- Koutoati, K., Mohri, F. and Daya, E.M. (2021), "Finite element approach of axial bending coupling on static and vibration behaviors of functionally graded material sandwich beams", Mech. Adv. Mater. Struct., 28, 1537-1553. https://doi.org/10.1080/15376494.2019.1685144.
- Le, C.I. and Nguyen, D.K. (2023), "Nonlinear vibration of threephase bidirectional functionally graded sandwich beams with influence of homogenization scheme and partial foundation support", Compos. Struct., 307, 116649. https://doi.org/10.1016/j.compstruct.2022.116649.
- Le, C.I., Le, N.A.T. and Nguyen, D.K. (2021), "Free vibration and buckling of bidirectional functionally graded sandwich beams using an enriched third-order shear deformation beam element", Compos. Struct., 261, 113309. https://doi.org/10.1016/j.compstruct.2020.113309.
- Le, T.N.A., Vu, T.A.N., Tran, V.L. and Nguyen, D.K. (2020), "Free vibration of bidirectional functionally graded sandwich beams using a first-order shear deformation finite element formulation", J. Sci. Tech. Civil Eng., 14, 136-150. https://doi.org/10.1016/j.compstruct.2020.113309.
- Nguyen, D.K., Vu, A.N.T., Le, N.A.T. and Pham, V.N. (2020), "Dynamic behavior of a bidirectional functionally graded sandwich beam under nonuniform motion of a moving load", Shock Vib., 2020, 1-15. https://doi.org/10.1155/2020/8854076.
- Nguyen, T.K., Vo, T.P., Nguyen, B.D. and Lee, J. (2016), "An analytical solution for buckling and vibration analysis of functionally graded sandwich beams using a quasi-3D shear deformation theory", Compos. Struct., 156, 238-252. https://doi.org/10.1016/j.compstruct.2015.11.074.
- Pang, M., Zhou, S.M., Hu, B.L. and Zhang, Y.Q. (2023), "Free vibration analysis of a bidirectional functionally graded carbon nanotube reinforced composite beam", J. Appl. Mech. Tech. Phys., 64, 878-889. https://doi.org/10.1134/S0021894423050176.
- Pham, V.N., Nguyen, D.K. and Gan, B.S. (2019), "Vibration analysis of two directional functionally graded sandwich beams using a shear deformable finite element formulation", Adv. Tech. Innov., 4, 152-164.
- Rajasekaran, S. and Khaniki, H.B. (2018), "Free vibration analysis of bi-directional functionally graded single/multi-cracked beams", Int. J. Mech. Sci., 144, 341-356. https://doi.org/10.1016/j.ijmecsci.2018.06.004.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "Modeling and analysis of functionally graded sandwich beams: A review", Mech. Adv. Mater. Struct., 26, 1776-1795. https://doi.org/10.1080/15376494.2018.1447178.
- Selmi, A. (2021), "Vibration behavior of bi-dimensional functionally graded beams", Struct. Eng. Mech., 77(5), 587-599. https://doi.org/10.12989/sem.2021.77.5.587.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 133, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
- Songsuwan, W., Pimsarn, M. and Wattanasakulpong, N. (2018), "Dynamic responses of functionally graded sandwich beams resting on elastic foundation under harmonic moving loads", Int. J. Struct. Stab. Dyn., 18, 181850112. https://doi.org/10.1142/S0219455418501122.
- Su, H. and Banerjee, J.R. (2015), "Development of dynamic stiffness method for free vibration of functionally graded Timoshenko beams", Comput. Struct., 147, 107-116. https://doi.org/10.1016/j.compstruc.2014.10.001.
- Su, Z., Jin, G., Wang, Y. and Ye, X. (2016), "A general Fourier formulation for vibration analysis of functionally graded sandwich beams with arbitrary boundary condition and resting on elastic foundations", Acta Mechanica, 227, 1493-1514. https://doi.org/10.1007/s00707-016-1575-8.
- Taleb, O., Sekkal, M., Bouiadjra, R.B., Benyoucef, S., Khedher, K.M., Salem, M.A. and Tounsi, A. (2024), "On the free vibration behavior of temperature-dependent bidirectional functionally graded curved porous beams", Int. J. Struct. Stab. Dyn., 24, 2450112. https://doi.org/10.1142/S0219455424501128.
- Tossapanon, P. and Wattanasakulpong, N. (2016), "Stability and free vibration of functionally graded sandwich beams resting on two parameter elastic foundation", Compos. Struct., 142, 215-225. https://doi.org/10.1016/j.compstruct.2016.01.085.
- Trefethen, L.N. (2000), Spectral Methods in MATLAB, Software, Environments, and Tools, SIAM, Philadelphia, USA.
- Trinh, L.C., Vo, T.P., Osofero, A.I. and Lee, J. (2016), "Fundamental frequency analysis of functionally graded sandwich beams based on the state space approach", Compos. Struct., 156, 263-275. https://doi.org/10.1016/j.compstruct.2015.11.010.
- Turan, M. and Kahya, V. (2021), "Free vibration and buckling analysis of functionally graded sandwich beams by Navier's method", J. Facil. Eng. Arch. Gazi Univ., 36, 743-757. https://doi.org/10.17341/gazimmfd.599928.
- Turan, M., Adiyaman, G., Kahya, V. and Birinci, A. (2016), "Axisymmetric analysis of a functionally graded layer resting on elastic substrate", Struct. Eng. Mech., 58(3), 423-442. https://doi.org/10.12989/sem.2016.58.3.423.
- Vu, T.A.N. (2021), "Fundamental frequencies of bidirectional functionally graded sandwich beams partially supported by foundation using different beam theories", Trans. Commun. Sci. J., 72, 452-467. https://doi.org/10.47869/tcsj.72.4.5
- Vu, T.A.N., Le, T.N.A. and Nguyen, D.K. (2020), "Free vibration of a 2D-FGSW beam based on a shear deformation theory", Viet. J. Mech., 42, 189-205. https://doi.org/10.15625/0866-7136/14817.
- Wattanasakulpong, N. and Bui, T.Q. (2017), "Vibration analysis third-order shear deformation FGM beams with elastic support by Chebyshev collocation method", Int. J. Struct. Stab. Dyn., 18, 1850071. https://doi.org/10.1142/S0219455418500712.
- Yahiaoui, M., Tounsi, A., Fahsi, B., Bouiadjra, R.B. and Benyoucef, S. (2018), "The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams", Struct. Eng. Mech., 68(1), 53-66. https://doi.org/10.12989/sem.2018.68.1.053.