• Title/Summary/Keyword: full state feedback

Search Result 93, Processing Time 0.028 seconds

PREVIEW CONTROL OF ACTIVE SUSPENSION WITH INTEGRAL ACTION

  • Youn, I.;Hac, A.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.547-554
    • /
    • 2006
  • This paper is concerned with an optimal control suspension system using the preview information of road input based on a quarter car model. The main purpose of the control is to combine good vibration isolation characteristics with improved attitude control. The optimal control law is derived with the use of calculus of variation, consisting of three parts. The first part is a full state feedback term that includes integral control acting on the suspension deflection to ensure zero steady-state deflection in response to static body forces and ramp road inputs. The second part is a feed-forward term which compensates for the body forces when they can be detected, and the third part depends on previewed road input. The performance of the suspension is evaluated in terms of frequency domain characteristics and time responses to ramp road input and cornering forces. The effects of each part of the suspension controller on the system behavior are examined.

Transmit Antenna Selection for Multi-user MIMO Precoding Systems with Limited Feedback

  • Mohaisen, Manar
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.2
    • /
    • pp.193-196
    • /
    • 2011
  • Transmit antenna selection techniques are prominent since they exploit the spatial selectivity at the transmitter side. In the literature, antenna selection techniques assume full knowledge of the channel state information (CSI). In this paper, we consider that the CSI is not perfectly known at the transmitter; however, a quantized version of the channel coefficients is fed back by the users. We employ the non-uniform Lloyd-Max quantization algorithm which takes into consideration the distribution of the channel coefficients. Simulation results show that the degradation in the BER of the system with imperfect CSI at the transmitter is tolerable, especially when the transmit diversity order is high.

PID형 슬라이딩모우드에 의한 전기,유압서보계의 위치제어에 관한 연구

  • 하석홍;이진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.157-161
    • /
    • 1992
  • Up to now, there has been a lot of researches on the sliding mode control which has the insensitive characteristics to the variations of plant parameters, nonlinearities and external disturbances. One dificulty in applying the sliding mode control is the need for the knowledge of the full-state vector. The use of state observer is a natural step towards the relaxation of this condition. However, the exact plant-modeling is assumed to be known. Recently, there has been a remarkable advance in the microprocessor and one can construct the controller which could not realize due to hardware restriction in the past. Therefore in this paper, the PID sliding mode controller which has only one output feedback signal is suggested by means of microprocessor and the performance of electro-hydraulic servosystem compersated with this controller is proved.

Analysis and Improvement of Low-Frequency Control of Speed-Sensorless AC Drive Fed by Three-Level Inverter

  • Chang Jie (Jay)
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.358-365
    • /
    • 2005
  • In induction machine drive without a speed sensor, the estimation of the motor flux and speed often becomes deteriorated at low speeds with low back EMF. Our analysis shows that, in addition to the state resistance variation, the estimated value of field orientation angle is often corrupted by accumulative errors from the integration of voltage variables at motor terminals that have low signal/noise ratio at low frequencies. A repetitive loop path of integration in the feedback can amplify this type of error, thus speeding up the degradation process. The control system runs into information starvation due to the loss of correct field orientation. The machine's spiral vectors are controlled only in a reduced dimension in this situation. A novel control scheme is developed to improve the control performance of motor's current, torque and speed at low frequencies. The scheme gains a full-dimensional vector control and is less sensitive to the combined effect of the error sources at the low frequencies. Experimental tests demonstrate promising performances are achievable even below 0.5 Hz.

A Study on the Position Control of Electro-hydraulic Sevosystem using PID Sliding Mode (PID 형 슬라이딩모우드에 의한 전기.유압서보계의 위치제어에 관한 연구)

  • Ha, Seok-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.126-135
    • /
    • 1992
  • Up to now, there has been a lot of researches on the sliding mode control which has the insensitive characteristics to the variations of plant parameters, nonlinearities and external disturbances. One difficulty in applying the sliding mode control is the need for the knowledge of the full-state vector. The use of state observer is a natural step towards the relaxation of this condition. However, the exact plant-modeling is assumed to be known. Recently, there has been a remarkable advance in the microprocessor and one can construct the controller which could not realize due to hardware restriction in the past. Therefore in this paper, the PID sliding mode controller which has only one output feedback signal is suggested by means of microprocessor and the performance of electro-hydraulic servosystem compensated with this controller is proved.

  • PDF

Grid Voltage-sensorless Current Control of LCL-filtered Grid-connected Inverter based on Gradient Steepest Descent Observer

  • Tran, Thuy Vi;Kim, Kyeong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.380-381
    • /
    • 2019
  • This paper presents a grid voltage-sensorless current control design for an LCL-filtered grid-connected inverter with the purpose of enhancing the reliability and reducing the total cost of system. A disturbance observer based on the gradient steepest descent method is adopted to estimate the grid voltages with high accuracy and light computational burden even under distorted grid conditions. The grid fundamental components are effectively extracted from the estimated gird voltages by means of a least-squares algorithm to facilitate the synchronization process without using the conventional phase-locked loop. Finally, the estimated states of inverter system obtained by a discrete current-type full state observer are utilized in the state feedback current controller to realize a stable voltage-sensorless current control scheme. The effectiveness of the proposed scheme is validated through the simulation results.

  • PDF

An Improved Active Damping Method with Capacitor Current Feedback

  • Geng, Yi-Wen;Qi, Ya-Wen;Liu, Hai-Wei;Guo, Fei;Zheng, Peng-Fei;Li, Yong-Gang;Dong, Wen-Ming
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.511-521
    • /
    • 2018
  • Proportional capacitor current feedback active damping (CCFAD) has a limited valid damping region in the discrete time domain as (0, $f_s/6$. However, the resonance frequency ($f_r$) of an LCL-type filter is usually designed to be less than half the sampling frequency ($f_s$) with the symmetry regular sampling method. Therefore, ($f_s/6$, $f_s/2$) becomes an invalid damping region. This paper proposes an improved CCFAD method to extend the valid damping region from (0, $f_s/6$ to (0, $f_s/2$), which covers all of the possible resonance frequencies in the design procedure. The full-valid damping region is obtained and the stability margin of the system is analyzed in the discrete time domain with the Nyquist criterion. Results show that the system can operate stably with the proposed CCFAD method when the resonance frequency is in the region (0, $f_s/2$). The performances at the steady and dynamic state are enhanced by the selected feedback coefficient H and controller gain $K_p$. Finally, the feasibility and effectiveness of the proposed CCFAD method are verified by simulation and experimental results.

Performance Advantage of Partial CoMP Transmission Using Finite Feedback (제한적 궤환량 사용 시 부분적 CoMP 전송의 성능 이득)

  • Park, Jae-Yong;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.14-20
    • /
    • 2012
  • CoMP(Coordinated Multi-Point transmission and reception) refers to a cooperative transmission strategy to control the interference from adjacent base stations in cellular mobile communication systems, which efficiently enhances the data throughput of the systems. As the number of the base stations participating in cooperative transmission increases, however, a larger amount of information exchange to carry the CSI(Channel State Information) of the mobile terminals is required. In this paper, we propose a partial CoMP transmission method for systems under the constraint of finite feedback information data. This method selects candidates of base stations which can provide high efficiency gain when they participate in the CoMP set. To achieve this, the cooperative base station combination is constructed by considering the preferred base stations of users. The cooperative base station combinations are dynamically applied since the preferred base station combinations of users may be different. We perform computer simulations to compare performance of the non-CoMP, full-CoMP and partial CoMP in terms of the average throughput using finite feedback and demonstrate the performance improvement of the proposed method.

Optimal Control of a Flexible Manipulator Using Kalman Filter (칼만 필터를 이용한 유연성 매니퓨레이터의 최적 제어)

  • 남호법;박종국
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.14 no.2
    • /
    • pp.155-163
    • /
    • 1989
  • For a one link flexible arm control, quadratic optimal control is applied to the dynamic modilling which is derived from an assumed mode method. For the quadratic optimal control technique, the full state feedback must be obtained for closing the control loop, but because some of the states in the flexible system(e.g. the rate of change of the time dependent variables of the mode shapes) can not be directly measured, state estimator is necessary to achieve the practical implementation of the optimal controller. When disturbances and measurement noise occur, stochastic approach must be applied to estimating the states of the system. Kalman Filter is used as a stste estimator. Through the simulation, the flexible system with state estimator is compared with the flexible system assuming that all the states can be measured.

  • PDF

An Study on the Improved Modeling and Double Loop Controller Design for Three-Level Boost Converter (Three-Level Boost Converter의 개선된 모델링 및 더블 루프 제어기 설계에 관한 연구)

  • Lee, Kyu-Min;Kim, Il-Song
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.442-450
    • /
    • 2020
  • A small-signal modeling approach for a three-level boost (TLB) converter and a design methodology for a double-loop controller are proposed in this study. Conventional modeling of TLB converters involves three state variables. Moreover, TLB converters have two operation modes depending on the duty ratio. Consequently, complex mathematical calculations are required for controller design. This study proposes a simple system modeling method that uses two state variables, unlike previous methods that require three state variables. Analysis shows that the transfer functions of the two operation modes can be expressed as identical equations. This condition means that the linear feedback controller can be applied to all operational ranges, that is, for full duty ratios. The design method for a double-loop controller using a PI controller is presented in step-by-step sequences. Simulation and experimental verifications are conducted to verify the effectiveness of the small-signal analysis and control system design.