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ABSTRACT-This paper is concerned with an optimal control suspension system using the preview information of road
input based on a quarter car model. The main purpose of the control is to combine good vibration isolation characteristics
with improved attitude control. The optimal control law is derived with the use of calculus of variation, consisting of three
parts. The first part is a full state feedback term that includes integral control acting on the suspension deflection to ensure
zero steady-state deflection in response to static body forces and ramp road inputs. The second part is a feed-forward term
which compensates for the body forces when they can be detected, and the third part depends on previewed road input.
The performance of the suspension is evaluated in terms of frequency domain characteristics and time responses to ramp
road input and cornering forces. The effects of each part of the suspension controller on the system behavior are examined.
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1. INTRODUCTION

Recently active suspensions with preview of road distur-
bances originally proposed by Bender (1968) have been
subject to renewed interest because of advances in micro-
processor and sensor technologies that make this type of
strategy realizable in practice. Preview information about
the road disturbances may be obtained either from preview
sensors located in front of the vehicle that measure the
road unevenness (relative to the vehicle body), or by
measuring motions of the front suspension and utilizing
this information to control the rear suspension under the
assumption that the rear wheels traverse the same path as
the front wheels (Hac and Youn, 1993; Louam et al.,
1992). The control laws for preview suspensions are
typically synthesized by minimizing a performance index
that trades-off measures of ride comfort, road holding,
suspension working space, and control effort as expressed
by the mean-square values of body acceleration, tire
deflection, suspension deflection, and control force,
respectively, for a random road input (Hac, 1992; Louam
et al., 1992). It has been demonstrated that the presence
of preview information can simuitaneously improve all
of the above aspects of performance (Hac, 1992). A
drawback of this approach to suspension design is that it
is mainly concerned with improving control of the vehicle
vibration, in particular, improvements in isolation of the
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vehicle body (ride comfort) and wheel tracking performance
(road holding). Good ride and handling, however, depend
not only on vibration characteristics, but also on the
ability of a suspension system to counteract body forces
resulting from changes in payload, aerodynamic forces,
braking, acceleration, or cornering maneuvers. It is known
that optimally controlled suspensions (without preview)
do not have zero steady-state deflection in response to
static body forces or ramp road inputs (Davis and
Thompson, 1988; ElMadany, 1990). Since active suspen-
sions usually have lower body natural frequencies and
therefore smaller stiffness than passive systems, in order
to ensure better ride comfort, large suspension deflections
may be expected in response to quasi-static loads. As a
result, a useful working space of the suspension may be
considerably reduced. Davis and Thomson (1988) and
Thompson and Davis (1988) have shown in their studies
of suspensions without preview that by including an
additional term involving an integral of the suspension
deflection in the performance index, it is possible to
obtain a system with infinite stiffness against static load-
ing. Hence the natural frequency of the body can be made
lower without reducing the static stiffness required to
resist body and maneuvering forces. It has been shown by
ElMadany (1990) that when the integral action is not very
strong, the performance of the suspension in terms of
vibration isolation, suspension travel and tire deflection is
only marginally reduced as compared to an optimal
system without integral control, while vehicle attitude
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control is vastly improved. The rms values depend on the
vehicle velocity and road roughness and the computa-
tions need the solution of Riccati and Lyapunov matrix
equations. For a preview active suspension, Thompson
and Pearce (2001a, 2001b, 2003) have derived a conveni-
ent matrix expression for the performance integral and
the identical and found techniques for the direct compu-
tation of rms values for control force, suspension stroke
and tire deflection on a random road. Youn ef al. (2006)
applied the preview control to a fast moving tracked
vehicle to improve the ride comfort charactristics.

The purpose of this paper is to examine the improve-
ments in attitude control of an active suspension with
preview that can be achieved by including an integral
action in the preview controller and by adding a feed-
forward term to reduce the effect of body forces when
they can be measured or estimated. Integral action is
achieved by inclusion of an additional term involving an
integral of the suspension deflection in the performance
index, the state vector, and the corresponding state
equation. It is assumed that in addition to finite preview
information about the road input, information about the
current body forces may be available. This assumption is
justified because the body force can usually be deter-
mined from existing measurements. For example, the
forces resulting from braking and acceleration could be
obtained as functions of measured forward acceleration
or brake fluid pressure.

The optimal suspension force is synthesized using a
variational approach. The optimal control law consists of
three parts: a full state feedback term (including the feed-
back of the integrated suspension deflection), a feedforward
term that depends on the present body force, and a
preview term that depends on previewed read input. The
results of this analysis are applied to quarter-car models
with various types of suspensions. The responses of the
model to a ramp road input and to a body force corre-
sponding to an outside quarter of a car during cornering
were simulated. Frequency domain characteristics in
regard to vibration isolation of the body, road-holding
ability and suspension travel are obtained.

2. SYSTEM MODEL

In this section an optimal preview and integral control
problem for a quarter car model with an active suspen-
sion is formulated. The vehicle system model considered
here is shown in Figure 1. In the Figure, m,, m,, k;, b, and
k, denote a quarter of the body mass, the mass of the
wheel with a semi-axle, the suspension stiffness, the
coefficient of viscous damping, and the tire stiffness,
respectively. The variables z,(f) and z,(f) denote absolute
vertical displacements of the body and the wheels
measured with respect ot the position of equilibrium,

Figure 1. A quarter car model with active suspension.

while u(r) describes the suspension control force, which
may be manipulated by the designer. The system is under
the influence of two types of disturbances: an external
force f(f) acting directly on the vehicle body, and a road
disturbance described by the road elevation, zy(#). It is
assumed that the road elevation, z,, and its rate of change,
Z,, can be measured at a given distance L ahead of the
vehicle, i.e. zo(7) and Z,(7) for 7€ [¢,1+1,] are known,
where 7,=L/v, is the preview time and v, is forward
velocity of the vehicle. It is considered that the body
force, fi(#), is also known but no preview information
about it is available. This assumption is reasonable since
the body force can usually be detected through measure-
ments that are used in feedback controlled suspensions.
For example, the variation of the payload can be obtained
by calculating the difference between the static suspen-
sion deflections with and without the payload and multi-
plying it by a given spring constant. The body force in
braking and acceleration could be obtained from the
measured vehicle forward acceleration, or brake circuit
pressure, or the angular acceleration of body pitch if it is
measured for other purposes. Leaning force in cornering
can be calculated using the angle of the steering wheel
and the forward speed of vehicle. The acrodynamic drag
force at high speeds can be computed from the vehicle
speed.

The dynamics of the system in Figure 1 is described by

miZi+k (2, — 22)+b(21 — Z)=u+fy (1a)
Mootk (23 — 24)+b(22 = 21)+hka(Z2 — Zo)=—u (1b)

It is noteworthy that adding equations (1a) and (1b) on
both sides yields

Jo(O)=mZi(0)+maZa(0)+ka[22(1) — 20(2)] @

Hence, the body force fy(#) can be obtained from the
above equation, at least in principle, when all the quan-
tities on the right handside are directly measured or esti-
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mated from measurements. These measured variables,
however, include the tire deflection z,(#) — zo(t) which is
not easy to obtain in practice. Therefore, one of the
methods of calculating f,(¢) described earlier appears to
be more practical.

To synthesize the control force u(f), we use optimal
control theory. In this approach an optimal suspension
force is synthesized that minimizes a performance index
that trades-off measures of ride comfort, suspension rattle
space, road holding and control effort. Therefore the
variances of the body acceleration Z,, the body to axle
displacement z,(t) — z,(¢), dynamic tire force, which is
proportional to the tire deflection z,(t)— z,(t), and the
magnitude of the control force u(f), are included in the
performance index. In addition, a term depending on an
integral of the suspension deflection is included in the
index to achieve a zero steady-state deflection against
static body forces or ramp road inputs. The performance
index to be minimized can be written as

T
J=}iﬂ% '[o {Z?"‘pl(zl - 12)2"’,02(22 - ZO)Z
T 2
+p{] @ —ZZW} +pas'}di ©
0

where p, i=1, 2, 3, and 4, are the weighting constants

reflecting the designer’s preferences regarding the

relative importances of various aspects of performances.
We introduce the following state vector

T

X=[(Z1 —22) 21{22— 20) 22 .r (z:- Zz)d‘{l @)

where the last state variable xs= I (21— zo)d T satisfies
the following differential equation®

)‘C5=X1 (5)

The equations of motion (1) along with equation (5)
can be expressed as a system of five first order differ-
ential equations which can be written as the following
matrix state equation

x=Ax+Bu+Dw (6)
where we R° is the state vector, u € R' the control

input and w € R? the disturbance. Matrices A, B, and D
and vector w are given by

0 1 0 -1 0
~ki/m, ~b/m, 0 bim, 0

A= 0 0 0 1 01,
ki/m, bim, -k,Jm, —b/m, 0O
1 0 0 0 0

B=[0 1/m, 0 -1/m, 0],

_[0 1m0 00" __[f(2)
D"[o 0 -10 0} v [WO(z)} @)

where wo(£)=z0(2), i.e. wo(t) is the ground velocity
input.

Using equation (1a) to substitute for Z;, along with
equations (4) and (5), the performance index (3) can be
expressed as a quadratic form of the state vector, X, the
control input u, and the disturbance w. That is

T
J=;im2iT (T Qx+ 2x" N, 042X "N, w
- 0
+2xX"M,u+w M, w+Ru’ }dt &)
where
K+ pmi kb 0 —kb 0
kb b 0 b 0
== 0 0 pmi 0 0O
' kb B2 0 B0
0 0 0 0 ,03m%
1 T
N1=;?[—k1 b 0 b 0],
1[-k b0 b 0]
N2=—2 »
ml0 0 000
Mi=[1/m0 0 0 0]
1/m? 0 1
M,= ] , R=—+ 9

Our objective now is to find an optimal input u(f), that
minimizes the given performance index J subject to
dynamic constraint (6).

3. ANALYTICAL SOLUTION

We begin this section with a precise definition of the
problem.

Definition 1. Consider the linear system described by
equation (6) with the given initial condition Xy(f)=X,.
Assume that w(f) is an a priori unknown disturbance
input which is modeled as a white noise process with
zero mean, and wy(7), 7€ [t,r+1,] where 7, is a
preview time, is given deterministically. The body force
£(?) is known at the present time instant ¢ but its future is
unknown and fy(¢) is assumed to have white noise
characteristics. Consider also the performance index (8)
in which Q is a symmetric and nonnegative definite
weighting matrix, and R is a positive scalar such that

Q.=Q-N.R'N; (10)

is nonnegative definite. Then the problem of determining
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an input
u()=fIx(), fo(t), wo(t + 0), 0L 0<t,], t, <t <T (11)

that minimizes the performance index (8) can be called
an optimal preview control problem with integral action.

As indicated in the above definition. The controller has
preview information with respect to wy(t) from the
present time ¢ up to f, time units in the future beyond ¢.
Since the time duration of the problem T — oo, the
preview time ¢, <T. Since wo(?) denotes the ground
velocity input, treating it as a white noise process is
reasonable, especially when accurate statistical
description of road unevenness is not abailable. Note that
the control law (11) may depend on the disturbing body
forces, fi(f) at the present time. This force can be
estimated from measurements as described in the
previous section. The assumption that fi(f) has a white
noise characteristic implies that the values of the process
at two time instants t and #+At are uncorrelated no matter
how small Ar is. Hence our knowledge of fi(¢) at time ¢
does not provide any information about fy(f) for 7> t.
This assumption is again quite reasonable since the body
forces resulting from braking or cross-winds may vary
rapidly as compared with time constants related to body
dynamics. Since matrix Q, is symmetric and positive
definite it can be factored as Q,=Q.*QY*. In order to
shorten the subsequent equations, we introduce the
following notation:

A,=A-BR'N], N,.=N,-N,R"'M],
D,=D-BR'M] (12)

We can now state the main result of this section.

Theorem 1. Consider the system described by equation
{6) under the performance index (8). Suppose that the
pair (A,, B) is stabilizable and (A,, Q.7) is detectable.
Assume that the components of the disturbance vector
w(s) satisfy the following: w,(f) is a stochastic white
noise process with zero mean value and wo(7),
Te [t,t+1¢,] is known deterministically, while fi(f) is
also white noise process with a mean value of zero and is
known at the present time ¢. Then the control law that
minimizes the performance index J (equation 8) for the
system (6) is given by

u=—R'[(NT+B"P)x+M]w+B'r] (13)

where P is a positive definite solution of the algebraic
Riccati equation

Q.+AP+PA —PBR'B"P=0 (14)
and the vector r(?) is
b Aja 0
()= j e *"(PD, +N,) do (15)
o Wo(t + O-)

The closed loop system is described by

x=A.x+D,w+BR'B"t (16)
where
A.=A-BR'(N[+B'P) an

is the closed loop system matrix which is asymptotically
stable (i.e. all of its eigenvalues have negative real parts).

Proof uses calculus of variation and is a relatively
straightforward extension of that given by Hac (1992) for
a system without an external body force and without
integral action. It is omitted.

The control law consists of three parts: 1) the feedback
part —R'(N]+B"P)x(#) which uses full state feedback.
This part is exactly the same as in corresponding LQ
problem without preview. It reduces system sensitivity to
parameter variations. Unmodeled dynamics and unmodeled
external disturbances: 2) the feedforward part R'Mw
which reduces the effect of the body force disturbance,
75() on the body motion (see the following explanation)
and 3) the preview part —R™'B"r(¢) which utilizes all
available information about future road disturbances on
the system dynamics.

From the form of M, given by equation (9) and the
definition of w(r) (equation 7) it follows that the
feedforward term, R "M w , is equal to

R*MTw=1—+—;—m—2 £ (18)
11y

That is, it depends only on fy(f). Furthermore, if the
weighting constant in the performance index correspond-
ing to the control input, p,=0, then R™'M]w= f,(¢) and
the suspension fully compensates for the body force.
Otherwise only partial compensation is possible.

In evaluating performance of a suspension with regard
to vibration isolation, frequency domain characteristics
play an important role. Since the closed loop system is
linear, the frequency domain transfer matrix defined by
the following relation

x(j @)=G(j @)W (j @) (19

can be obtained by taking Fourier transforms on both
sides of equations (15) and (16). After simple mani-
pulations, this yields

G(w)=(jal - A,)"'[-BR'B" x

'p AZO' 0
j e “(PD,+N,)| . |do+D,] (20
0 4

where I is the idently matrix. Matrix G(j@) is of dimen-
sion 5x2. The desired frequency domain characteristics
may be obtained by plotting individual entries of G(j®)
versus frequency. For example, the transfer function
between the ground velocity input w,=Z, and body
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acceleration x,=Z, corresponds to j®G,,(jw) where
G.,(jw) is an element of the second row and the second
column of G(jw).

4. RESULTS OF NUMERICAL SIMULATIONS

In this section selected results of simulations for a 2-DOF
vehicle model with passive and various active suspen-
sions are presented. The following values of vehicle
parameters were used in the simulations:

my/mi=0.1, k/m;=36 [N/(mxkg)],
kx/m,=360 [N/(mxkg)],
b/m,=3.0 [Ns/(mxkg)]. 20N

These values correspond to the natural frequencies of the
body and the wheel of about 1 Hz and 10 Hz,
respectively, for a passive suspension. The following
weighting constants in the performance index were used:
p=5x10%, p=10%, p,=5x10°, p,=0. They correspond to a
suspension that emphasizes ride comfort over road
holding. The value of p,, corresponding to the integral of
the suspension deflection, was selected by trial and error
to yield an improvement of attitude control with small
penalty in terms of vibration characteristics, as discussed
below.

In Figures 2 and 3, the frequency domain charac-
teristics in terms of amplitude ratios of body acceleration,
suspension deflection and tire deflection to ground velo-
city input are shown. In Figure 2 the characteristics for a
passive suspension and two active systems: with and
without integral action are shown. In Figure 3 the same
characteristics are shown with active systems using
preview information about road disturbances. The pre-
view time was £,=0.3 sec. It can be seen that by including
an integral action in the suspension controller, suspension
deflections at the very low input frequencies are reduced.
Other aspects of suspension performance, however,
deteriorate. The degree of deterioration of performance
increases as the weight p; on the integral term is
increased. The value of p, selected in this study ensures
that the performance in terms of vibration characteristics
of systems with integral action is close to that of the
optimal suspensions with proportional feedback. As
observed in earlier studies (Hac, 1992; Hac and Youn,
1993), simultaneous improvements in all three charac-
teristics are brought about by preview information.

In particular, suspension deflections at frequencies
below the sprung mass natural frequency are reduced to a
level below that of passive system. The characteristics for
the suspension deflections and tire deflections exhibit
deep decreases at and around wheel hop natural frequency.
At that frequency the characteristic for body acceleration
has an invariant point (Hedrick and Butsuen, 1988). That
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Figure 2. Frequency characteristics of various suspension
systems without preview: (a) body acceleration; (b)
suspension deflection; (c) tire deflection.

is, characteristics for all passive and active systems have
to pass through that point and tire deflection may be
drastically reduced at that frequency without compromi-
sing ride comfort.

In Figure 4 responses of the vehicle model to a ramp
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Figure 3. Frequency characteristics of various suspension
systems with preview: (a) body acceleration; (b) suspen-
sion deflection; (¢) tire deflection.

road input are shown. The slope of the road was assumed
to be 1 m per 20 m. The road unevenness around the
mean value is described by a stationary stochastic process
with spectral density
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Figure 4. Time responses of the vehicle model with
various suspensions to a ramp road input.

S(@)=Z D 22)
T @ + (ave)
where vy, the forward velocity, was assumed to be 20 m/
s, a-circular frequency, o the standard deviation of road
unevenness and a a constant parameter depending on the
type of road surface. The values of a=0.15 m™ and
#=9x10° m* were assumed. Using this road input, the
responses of the vehicle model in terms of suspension
deflection for the passive suspension, active without an
integral term, active with integral action, and the active
system with preview and integral control were computed.
The active suspension without an integral term exhibits
considerable steady-state error (offset) in suspension
deflection due to a constant ground velocity input on a
sloping road. Integral action eliminates offset, while the
presence of preview improves the transient performance
by reducing maximum overshoot and settling time. The
transient response to the ramp input can also be improved
by increasing the weighting of the integral term in the
performance index. The performance characteristics,
however, in terms of vibration isolation of the body,
suspension travel, and tire deflection, deteriorate with
increasing the weightimg. Hence a compromise is necessary.
In order to examine the attitude control of a vehicle in
response to an external body force, a cornering maneuver
was simulated. The body force, corresponding to the
outer quarter of vehicle is assumed to be described by the
following function

Asin2zt if 6,5t <t,+05

A if th+05<t<tp+15 23)
Acos27zT if te+1.551<14,+2

0 otherwise

fo/m]=
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Figure 5. Responses of the vehicle models with various
suspensions to body force in a cornering maneuver: (a)
body force; (b) suspension deflection; (c) absolute body
position.

where 7=(t - t,)/T. The amplitude of force A=—0.5 was
assumed, the total time period of the maneuver was 7=2 s
and the initial time #=1.5 s. The plot of body force is
shown in Figure 5a. Responses of the model to this force
in terms of suspension deflection and body position are
shown in Figure 5b and 5Sc, respectively for the passive
suspension, the active suspension with PI control and
unknown body force, and the active suspension with PI
control and estimated body force. When the body force
disturbance is unknown, the deflection of the active
suspension with integral control remains large (about
60% of that of a passive system) during the transient
response, and it takes about 1 s to reduce the suspension
deflection to the desired level. In addition, the body
exhibits lean in the opposite direction after the maneuver
is completed. These effects are minimized when the body
force can be detected and compensated for by a
feedforward term.

5. CONCLUSIONS

In this paper an active suspension system is considered

with the purpose of obtaining good vibration isolation
properties combined with improved attitude control of
the vehicle body under the influence of external body
forces and ramp road inputs. The suspension controller
was synthesized by applying methods of optimal control
theory to a 2-DOF vehicle model subjected to two types
of disturbances: road irregularities and external body
forces representing changes in payload, aerodymanic
forces and/or inertial forces. To assure zero steady-state
suspension deflection in response to static body forces or
ramp inputs, an integral term of suspension deflection
was introduced in the performance index. The proposed
controller consists of a traditional proportional preview
controller with an additional integral term and a feed-
forward term to provide compensation for (measurable)
body forces. Results, a steady-state error in suspension
deflection can be eliminated when integral action is used,
and that presence of preview information about the road
input improves transient vehicle performance. Integral
action slightly reduces system performance in regard to
vibration characteristics but these adverse eftects can be
minimized when the integral gain is small. Preview, on
the other hand, yields large improvements in these
characteristics. Simulations of a vehicle performing a
cornering maneuver have shown that in order to signifi-
cantly improve transient behavior, it is essential that the
body forces resulting from cornering be detected and
compensated for. In that case the proposed controller can
counteract even dynamic body forces providing an ex-
cellent attitude control.
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