• Title/Summary/Keyword: fruit rot disease

Search Result 110, Processing Time 0.027 seconds

Effect of Monosporascus Root Rot Infection on Photosynthetic Activity and Plant Growth of Oriental Melon (검은점뿌리썩음병 감염이 참외의 광합성 및 생육에 미치는 영향)

  • Heo, Noh-Youl;Lee, Yong-Bum
    • Research in Plant Disease
    • /
    • v.8 no.4
    • /
    • pp.245-249
    • /
    • 2002
  • Monosporascus cannonballus, a soilborne ascomycetes is recently described in Korea that causes root rot/vine decline of cucurbits. The effect of Monosporascus root rot disease on photosynthetic activity and growth was studied on oriental melon plants. At harvest stage, photosynthetic activity of diseased oriental melon plants was lower and stomatal resistance was higher than healthy plants, while xylem exudates were not observed in diseased plants. There was no difference in mineral contents of the leaves and stems between diseased and healthy plants. Leaf area, fresh and dry weights, and fruit weights of the plants were markedly decreased in diseased plants compared to those of healthy plants.

Inhibitory Effect of Moriniafungin Produced by Setosphaeria rostrata F3736 on the Development of Rhizopus Rot

  • Park, Min Young;Park, So Jung;Kim, Jae-Jin;Lee, Dong Ho;Kim, Beom Seok
    • The Plant Pathology Journal
    • /
    • v.36 no.6
    • /
    • pp.570-578
    • /
    • 2020
  • Rhizopus rot is a serious postharvest disease of various crops caused by Rhizopus spp. and controlled mainly by synthetic fungicides. We detected the antifungal activity of a culture extract of Setosphaeria rostrata F3736 against Rhizopus oryzae. The active ingredient was identified as moriniafungin, a known sordarin derivative, which showed minimum inhibitory concentrations of 1-8 ㎍/ml against Colletotrichum spp. and 0.03-0.13 ㎍/ml against Rhizopus spp. in vitro. Moriniafungin showed protective control efficacies against Rhizopus rot on apple and peach fruits. Treatment with 25 ㎍/ml moriniafungin delimited the lesion diameter significantly by 100% on R. oryzae-inoculated apple fruits compared with the non-treated control. Treatment with 0.04 ㎍/ml of moriniafungin reduced the lesion diameter significantly by 56.45%, and treatment with higher concentrations of 0.2-25 ㎍/ml reduced the lesion diameter by 70-90% on Rhizopus stolonifer var. stolonifer-inoculated peach fruit. These results suggest moriniafungin has potential as a control agent of postharvest diseases caused by Rhizopus spp.

Use of hot water, combination of hot water and phosphite, and 1-MCP as post-harvest treatments for passion fruit (Passiflora edulis f. flavicarpa) reduces anthracnose and does not alter fruit quality

  • Dutra, Jaqueline Barbosa;Blum, Luiz Eduardo Bassay;Lopes, Leonardo Ferreira;Cruz, Andre Freire;Uesugi, Carlos Hidemi
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.847-856
    • /
    • 2018
  • This research aimed to evaluate the effectiveness of hot water ($43-53^{\circ}C{\cdot}5min^{-1}$; $47^{\circ}C{\cdot}2-6min^{-1}$), 1-methylcyclopropene (1-MCP) at $50-300nL\;L^{-1}$ and a combination of hot water ($47/49^{\circ}C{\cdot}5min^{-1}$) and phosphite $40%\;P_2O_5+20%\;K_2O$;$40%\;P_2O_5+10%\;Zn$) in anthracnose control and the effect on fruit quality [fresh weight loss (FWL-%); pH, total soluble solids ($TSS-^{\circ}Brix$), and titratable acidity (TA = % citric acid (CA)] of passion fruit ( Passiflora edulis f. flavicarpa ) at the postharvest stage. When the fruits were in the stage of 0% dehydration and fully yellow peels, they were disinfested and inoculated with Colletotrichum gloeosporioides. They were then subjected to the above mentioned treatments; this was followed by incubation for 120 h. The diameter of the disease lesions was monitored daily. After the incubation, a physico-chemical analysis was performed. Hot-water treatment resulted in disease reduction at 47 and $49^{\circ}C$ for 4 and 5 min. The combination of hot-water treatment at $47^{\circ}C$ (4 or 5 min) and application of the phosphite of K or Zn significantly reduced disease severity in fruits. The 1-MCP treatment reduced anthracnose severity in passion fruit mainly at $200nL\;L^{-1}{\cdot} 24h^{-1} $. None of the treatments significantly changed the physico-chemical characteristics of the fruit [FWL (2.6-4.1%); pH (3.2-3.5), TSS ($8.9-10.9^{\circ}Brix$), and TA (1.8-2.5% CA)].

Current Status and Future Prospects of White Root Rot Management in Pear Orchards: A Review

  • Sawant, Shailesh S.;Choi, Eu Ddeum;Song, Janghoon;Seo, Ho-Jin
    • Research in Plant Disease
    • /
    • v.27 no.3
    • /
    • pp.91-98
    • /
    • 2021
  • The current social demand for organic, sustainable, and eco-friendly approaches for farming, while ensuring the health and productivity of crops is increasing rapidly. Biocontrol agents are applied to crops to ensure biological control of plant pathogens. Research on the biological control of white root rot disease caused by a soil-borne pathogen, Rosellinia necatrix, is limited in pears compared to that in apple and avocado. This pathogenic fungus has an extensive host range, and symptoms of this disease include rotting of roots, yellowing and falling of leaves, wilting, and finally tree death. The severity of the disease caused by R. necatrix, makes it the most harmful fungal pathogen infecting the economical fruit tree species, such as pears, and is one of the main limiting factors in pear farming, with devastating effects on plant health and yield. In addition to agronomic and cultural practices, growers use chemical treatments to control the disease. However, rising public concern about environmental pollution and harmful effects of chemicals in humans and animals has facilitated the search for novel and environmentally friendly disease control methods. This review will briefly summarize the current status of biocontrol agents, ecofriendly methods, and possible approaches to control disease in pear orchards.

Incidence and Ecology of Major diseases on Peach in Gyeongbuk Province (경북지역 복숭아의 주요 병해 발생 및 생태)

  • 박소득;권태영;임양숙;정기채;박선도;최부술
    • Korean Journal Plant Pathology
    • /
    • v.11 no.3
    • /
    • pp.224-229
    • /
    • 1995
  • Occurrence and incidences of major diseases of peach (Prunus persicae pv. vulgaris), leaf curl caused by Taphrina deformans, bacterial shot hole caused by Xanthomonas campestris pv. pruni, brown rot caused by Monilinia fructicola, and anthracnose caused by Glomerella cingulata in peach orchards in Cheongdo and Kyungsan areas of Gyeongbuk province, Korea, were investigated for four years from 1990 to 1993. In leaf curl and bacterial shot hole which mainly occurred on leaves, frist disease occurrences were dated from late April to early May. The maximum leaf curl incidence was dated in mid May, while dates of the maximum bacterial shot hole incidence varied from mid May to mid August depending on the years surveyed. In brown rot and anthracnose on fruit, the first disease occurrence dates ranged from early June to early August; however, the maximum disease incidences for both were invariably dated in late August. The disease incidences on the dates of the maximum incidences differed year by year, and the averages for the 4 years were 13.2%, 10.5%, 10.9% and 3.8% for leaf curl, bacterial shot hole, brown rot and anthracnose, respectively. Especially in the leaf curl disease, the first disease occurrence dates and the maximum disease incidences matched with the amounts of precipitation of rain up to April, suggesting that the disease occurrence may be related to the precipitation during the early season. The occurrence of leaf curl was somewhat higher in cultivar“Baekmi”than other cultivars. All of the major disease occurred more in hilly orchards than in plain ones.

  • PDF

Occurrence and Distribution of Monosporascus Root Rot and Pathogenicity of Monosporascus cannonballus on Cucurbitaceae Plants (박과류 검은점뿌리썩음병의 발생분포 및 분리병원균의 병원성)

  • 허노열;류경열;현익화;권진혁
    • Research in Plant Disease
    • /
    • v.7 no.1
    • /
    • pp.11-15
    • /
    • 2001
  • Root rot of Cucurbitaceae plants, caused by Monosporascus cannonballus, is one of the recently described diseases in Korea. The distribution and pathogenicity of M. cannonballus were examined by field and in vitro experiments. Root rot caused by M. cannonballus occurred on melon, oriental melon, watermelon and cucumber plants. In two years of disease survey, the disease occurred at 10 and 32 fields in 1997 and 1998, respectively, which were located at Kimhae, Chinju, and Namhae in Kyeongnam province, at Kwangyang in Chonnam province, at Kwangju city, and at Yeoju and Inchon in Kyeonggi province. The disease progress in a melon field at Namhae was not observed until the middle stage of plant growth, but rapidly increased at the fruit maturing stage, resulting in more than 50% yield loss. Isolation rate of M. cannonballus was 36.7% from wilted hosts. Fusarium oxysporum and Rhizoctonia solani were also frequently isolated. In vitro test, seedlings wilted after 7∼14 days of inoculation, and perithecia were formed in infected roots 21 days later. Two cucumber cultivars, Baekbong and Eunhwa, were resistant to the disease.

  • PDF

Brown Rot of Apricot and Mume Caused by Phomopsis vexans

  • Kim, Wan-Gyu;Hong, Sung-Kee;Cho, Weon-Dae;You, Chang-Hyun
    • The Plant Pathology Journal
    • /
    • v.19 no.5
    • /
    • pp.231-234
    • /
    • 2003
  • Brown rot symptoms severely occurred on fruits of apricot and mume grown in Changnyeong, Suwon and Yeongi in Korea during a disease survey in June 2002. A total of 32 isolates of Phomopsis sp. was obtained from the fruit rot symptoms. All isolates were identified as Phomopsis vexans based on their morphological and cultural characteristics. Four isolates of the fungus were tested for pathogenicity to fruits of apricot and mume by artificial inoculation. All isolates induced brown rot symptoms on the fruits of apricot and mume by wound inoculation. Unwounded inoculation also induced symptoms on mume fruits but not on apricot fruits. The symptoms on the fruits induced by artificial inoculation were similar to those observed in the orchard. The pathogenicity tests revealed that mume was more susceptible to the pathogen than apricot. This is the first report of brown rot of apricot and mume caused by P. vexans.

The Responses of Yukbo Strawberry (Fragaria ananassa Duch.) Fruit to Nitric Oxide

  • Eum, Hyang-Lan;Lee, Seung-Koo
    • Food Science and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.123-126
    • /
    • 2007
  • The quality of Yukbo strawberry (Fragaria ananassa Duch.) fruit declines rapidly after harvest. Therefore, we examined the effects of nitric oxide (NO) on its respiration rate, quality, and shelf life. Strawberries were fumigated for 5 hr at 0, 50, 100, 200, or $500\;{\mu}L/L$ NO atmosphers, followed by a hold at $18^{\circ}C$ in air. Treatment with NO delayed the onset of ethylene production ad reduced respiration, which at $18^{\circ}C$ resulted I a maintained quality and prolonged shelf life. The NO-treated strawberries were also firmer and had a lower incidence of disease than the untreated fruit. The effect of NO on fruit quality was dose-dependent. Strawberries that were treated with low and high concentrations of 50 and $500\;{\mu}L/L$ No, respectively, had severe disease incidence and were of poor quality. Treating with NO at a concentration of $200\;{\mu}L/L$ appeared to slow down the ripening and senescence of fruit stored at $18^{\circ}C$. Calyx browning, respiration, and rot development progressed more quickly in strawberries treated with $500\;{\mu}L/L$ NO compared to those treated with $200\;{\mu}L/L$ No.

Occurrence of Jujube (Zizyhus jujube) Fruit Rot caused by Phytophthora nicotianae and P. palmivora (Phytophthora nicotianae와 P. palmivora에 의한 대추역병 발생)

  • 임양숙;정기채;김승한;윤재탁
    • Research in Plant Disease
    • /
    • v.8 no.1
    • /
    • pp.41-44
    • /
    • 2002
  • Two species of Phytophthora were isolated from infected fruits of jujube. Among 18 isolates collected, 6 were identified as P. nicotianae and 12 as P. patmivora on the basis of their mycological characteristics. The former produced no caduceus, ovoid to spherical sporangia in contrast to caduceus, ellipsoid, and broadly avoid to spherical ones of the latter. These two species were shown to be heterothallic and markedly papilate, chlamydospores abundant, and Al mating type. They skewed strong pathogenicity to fruits of jujube and pear while no symptom was produced on apple fruit by artificial inoculation. This is the first report of juiube fruit rot caused by P. ninotianae and P. palmivora in Korea.

Greenhouse Evaluation of Melon Rootstock Resistance to Monosporascus Root Rot and Vine Decline as Well as of Yield and Fruit Quality in Grafted 'Inodorus' Melons

  • Jang, Yoonah;Huh, Yun-Chan;Park, Dong-Kum;Mun, Boheum;Lee, Sanggyu;Um, Yeongcheol
    • Horticultural Science & Technology
    • /
    • v.32 no.5
    • /
    • pp.614-622
    • /
    • 2014
  • Melons (Cucumis melo L.) are generally grafted onto Cucurbita rootstocks to manage soilborne pathogens such as Monosporascus root rot and v ine decline (MRR/VD) and Fusarium wilt. However, g rafting onto Cucurbita rootstocks reportedly results in the reduction of fruit quality. In this study, the resistance to MRR/VD, yield, and fruit quality of melons grafted onto melon rootstocks were evaluated under greenhouse conditions. Eight melon rootstocks (R1 to R8) were used and the inodorus melon 'Homerunstar' was used as scion. Melon rootstocks R1 to R6 were selected based on resistance to MRR/VD under greenhouse conditions. Non-grafted 'Homerunstar' and plants grafted onto squash interspecific hybrid 'Shintozwa' rootstock (Cucurbita maxima D. ${\times}$ C. moschata D.) served as controls. Grafted melons were cultivated in the greenhouse infested with Monosporascus cannonballus during two growing seasons (summer and autumn). The responses to MRR/VD, yield, and fruit quality differed depending on the rootstocks and growing season. The melons grafted onto 'Shintozwa' exhibited less severe disease symptoms and higher survival rates than non-grafted melons in both seasons. While the melon rootstocks in the summer cultivation did not increase the survival rate compared to non-grafted melons, the melon rootstocks R1 and R2 in the autumn cultivation led to higher survival rates. The melon rootstocks resistant to MRR/VD increased the percentage of marketable fruits and marketable yields. Grafting onto the melon rootstocks caused little or no reduction of fruit quality such as low calcium content, fruit softening, and vitrescence, especially in lower-temperature autumn season. Accordingly, these results suggest that grafting onto the melon rootstocks may increase the tolerance to MRR/VD and the marketable yield without a reduction of fruit quality.