• 제목/요약/키워드: fruit growth

Search Result 1,329, Processing Time 0.022 seconds

Effects of Application Time of GA Paste on Tree and Fruit Growth and Fruit Quality of 'Kamcheonbae' and 'Whangkeumbae' Pears (GA 도포제의 처리시기가 '감천배'와 '황금배'의 생육과 과실 품질에 미치는 영향)

  • Youn, Cheol-Ku;Kim, Seon-Kyu;Lim, Sang-Cheol;Kim, Hag-Hyun;Kim, Young-Ho;Lee, Cheol-Hee;Choi, Kwan-Soon
    • Horticultural Science & Technology
    • /
    • v.18 no.3
    • /
    • pp.383-386
    • /
    • 2000
  • To clarify the effects of application time of $GA_{4+7}$ paste (GA paste) on tree and fruit growth, fruit quality, and maturity of 'Kamcheonbae' and 'Whangkuembae' pears, GA paste of 25 mg each was applied directly to fruit stalk 25, 35, and 45 days after full bloom (DAFB). Later application of GA paste tended to increase the fruit weight of 'Kamcheonbae' pear. GA paste applied 45 DAFB increased the titratable acidity of the two cultivars. Fruit firmness of 'Kamcheonbae' was not affected by the GA paste treatment, while that of 'Whangkuembae' was increased by more than 20%. Fruit maturity of the two cultivars was hastened for 4 days by the GA paste treatment at any application time. Sharp increase in the fruit weight of the GA paste-treated 'Kamcheonbae' was noted from early July while that of control exhibited slow increase from early September. The initial growth pattern of 'Whangkeumbae' was similar to that of 'Kamcheonbae', but the growth slowed down from early September, regardless of the treatments.

  • PDF

Growth and Fruit Characteristics of 'Duke' Highbush Blueberry by Mixture of Different Organic Matters in Soil (상토 중 유기자재에 따른 하이부쉬블루베리 'Duke' 품종의 수체 생육 및 과실 특성)

  • Kim, Su Jin;Lee, Dong Hoon;Hur, Youn Young;Im, Dong Jun;Park, Seo Jun
    • Korean Journal of Plant Resources
    • /
    • v.34 no.4
    • /
    • pp.263-269
    • /
    • 2021
  • Growth and fruit characteristics of 'Duke' highbush blueberry by mixture of different organic matters in soil were investigated. The soil acidity was 4.2 to 4.8, sawdust treatment was the highest, and peat soil and peatmoss treatments were similar. The organic matter content of the soil was 2.5% for sawdust and 4.1% for soil with peatmoss and peat soil. The soil hardness of all treatment was found to be about 1 ~ 5 kgf cm-2 which was suitable for growing crops. The number of suckers and main stems were high in the order of peat soil, peatmoss, sawdust treatment. In addition, the blueberry plants in the peatmoss and peat soil treatments had thicker and longer suckers and more shoots than those in the sawdust treatment. Among the characteristics of fruit, there was no statistical difference between the organic materials treatment in weight, diameter, length, and hardness of fruit. However, the total soluble solid and fruit yield were high in the order of peat soil, peatmoss, sawdust treatment. Therefore, as a result of comprehensively reviewing the characteristics of growth and fruits according to the soil environment, it was determined that peatmoss could be replaced with peat soil for stable production in domestic blueberry cultivation.

Immunohistochemical Localization of Endogenous IAA in Peach (Prunus persica L.) Fruit during Development

  • Zhang, Wei;Li, Yang;Shi, Mengya;Hu, Hao;Hua, Baoguang;Yang, Aizhen;Liu, Yueping
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.317-325
    • /
    • 2015
  • Peach (Prunus persica L.) is a model species for stone fruit studies within the Rosaceae family. Auxin plays an important role in the development of peach fruit. To reveal the distribution of auxin in the tissues of peach fruit, immunohistochemical localization of IAA was carried out in the seed, mesocarp, and endocarp in developing peach fruit using an anti-indole-3-acetic acid (anti-IAA) monoclonal antibody. A strong IAA signal was observed throughout the outer and inner integument during peach fruit development, and the distribution was zonal. The IAA signal was mainly focused in mucilage layers in the outer integument. The outer integument may function to produce or store IAA in the seed; a strong IAA signal was detected in the cells around the vascular tissue, whereas a weak IAA signal was located in the vascular tissues. In the mesocarp, the cells around the vascular bundle tissue gave rise to an IAA signal that increased in the late phase of fruit growth, which coincided with a significant increase in fruit growth. The distribution of IAA, however, was changed when fruit was treated with auxin transport inhibitors NPA (1-N-naphthylphthalamic acid) or TIBA (2, 3, 5-triiodobenzoic acid); in mesocarp tissues, an IAA signal was detected mainly in vessels of the treated fruit. During the critical period of endocarp lignification, the vessel lignification process was negatively correlated with IAA signal. The present results confirmed that the distribution of IAA was different in various tissues of peach fruit according to the developmental stage. This research provides cytological data for further study of the regulatory mechanism of auxin in peach fruit.

Analysis of fruit growth and post-harvest characteristics of hydroponically grown 'K3' melons (Cucumis melo L.) harvested at different days after fruit setting and stored at low temperature

  • Jung-Soo Lee;Ju Youl Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.341-355
    • /
    • 2022
  • This research was to examine the differences in post-harvest quality of melons depending on the harvest time after fruit setting. Musk melon cultivar 'K3' plants were grown in glass house conditions with a hydroponic system, and the fruits were harvested at 50, 60, and 70 days after fruit setting. The post-harvest characteristics of melons stored at 7℃ were measured over 32 days. The harvested fruits at 50, 60, 70 days after fruit setting did not differ significantly in weight, height, or size. Solid sugar content was highest in the fruits harvested at 70 days after fruit setting, but firmness, L* value, and respiration rate were highest in the fruits harvested at 50 days after fruit setting. When the harvested melons were stored at 7℃, 'K3' melons responded differently according to the harvest days after fruit setting. The major changes during storage of 'K3' melons can be summarized as follows: Firmness, respiration, moisture content, and general appearance index during storage were highest in the melons harvested at 50 days after fruit setting, but soluble solid content, fresh weight loss, and sensory evaluation were high in the melons harvested at 60 and 70 days after one. During storage at 7℃, there were no significant differences in the appearance of 'K3' melons harvested at different periods after fruit setting, but difference in soluble solid content and taste were noted. It is recommended that the fruit of 'K3' melon plants be harvested about 60 days after fruiting to provide consumers with the highest quality for taste and for storage.

Effects of Temperature and Ethylene Response Inhibitors on Growth and Flowering of Passion Fruit

  • Liu, Fang-Yin;Peng, Yung-Liang;Chang, Yu-Sen
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.356-363
    • /
    • 2015
  • This study examined the effects of different day/night temperature regimes or silver ion on growth and flowering of passion fruit 'Tai-nung No.1'. Low temperature treatment ($20/15^{\circ}C$) caused passion fruit cultivar 'Tai-nung No.1' to fail to flower. Flowering induction occurred within a temperature range of $20-30^{\circ}C$, with no significant difference in the days to first flower bud and the total number of flower buds between plants grown at $30/25^{\circ}C$ and $25/20^{\circ}C$. However, plants grown at $30/25^{\circ}C$ exhibited their first flower buds set on the higher nodes and had higher abortion rates of flower buds than those at $25/20^{\circ}C$. Plants grown at $30/25^{\circ}C$ had the most rapid growth and the shortest plastochron. We also evaluated the effect of the ethylene response inhibitors silver nitrate ($AgNO_3$) and silver thiosulfate (STS) on growth and flowering of potted passion fruit 'Tai-nung No.1', when they were exposed to low temperature conditions ($20/15^{\circ}C$) following chemical treatments ($AgNO_3$ or STS, at 0.5 or 1.0 mM). $AgNO_3$ and STS treatments induced flower formation and initial flower bud formation within approximately two weeks at $20/15^{\circ}C$ whereas non-treated control plants exhibited no flower formation. ACC content and activity of ACC oxidase in the leaves of passion fruit 'Tai-nung No.1'exposed to low temperature conditions ($20/15^{\circ}C$) were significantly inhibited by the ethylene inhibitor treatments. These results indicate that ethylene, which is produced under low temperature conditions, plays an important role in inhibiting flower formation in passion fruit.

Effects of Groundwater Cooling Treatment on Growth, Yield, and Quality of Strawberries under High Temperature Conditions (이상 고온 조건에서 지하수 냉방 처리가 딸기의 생육과 수량 및 품질에 미치는 영향)

  • Lee, Gyu-Bin;Lee, Jung-Eun;Choe, Yun-Ui;Park, Young-Hoon;Choi, Young-Whan;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.631-639
    • /
    • 2018
  • A Cultivation method to minimize the damage caused by high temperatures was studied by investigating the effects of groundwater cooling treatment on the growth, yield, and quality of strawberries. In the groundwater cooling treatment, the daily average temperature of the rhizosphere was reduced from $26.9^{\circ}C$ to $24.9^{\circ}C$. The root length increased by 0.3-9.2 cm, depending on the cultivar and growth period. The leaf number, leaf area, leaf length, leaf diameter, and plant height also increased, especially in the cultivars 'Seolhyang' and 'Maehyang', resulting in higher fresh and dry weights. The number of fruit per plant increased from 7.7 to 12.5 in 'Seolhyang', and the fruit weight increased by 0.3 g in 'Seolhyang' and 1.3 g in 'Maehyang'. The fruit hardness increased, but no significant difference in fruit coloration was observed. The sugar content of the fruit was improved by $0.2-0.3^{\circ}Brix$. Therefore, groundwater cooling of the rhizosphere was effective in improving the growth and productivity of strawberries under abnormally high temperature conditions and can be considered a cost-efficient cooling system.

Aging Characteristics of Grape and Pear Growth Paper Bag (포도, 배 재배용 과수봉지의 열화 특성)

  • Ha, Jin-Yang;Chae, Su-Myoung;Yoon, Seung-Lak
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.6
    • /
    • pp.41-49
    • /
    • 2014
  • The research was performed to investigate the weathering characteristics of fruit growth paper bags. The bags were used to cover fruits such as grapes and pears. And then they were collected after 30 and 60 days exposure at the orchard. The physical and optical properties of the bags tended to decrease with the exposure times. The larger change on the properties were found on the papers exposed for 30 days. The cover paper for pear showed the largest density changes. The air permeability were decreased with the exposure time in all bags. The cover paper for pear showed the very low values of air permeability. The mechanical properties of the fruit bags showed to be gradually decreased with the length of exposure time. The tear index showed the largest differences. The cover paper for pear showed the rapid decrease on the mechanical properties after 60 days of the exposure. The inner paper, however, showed the strength enough to cover the fruits. The precipitation showed more effect on the degradation of fruit growth paper bags than the light hours.

Influence of Abnormally Low Temperatures on Growth, Yield, and Biologically Active Compounds of Strawberry (이상 저온조건이 딸기의 생육, 수량 및 생리활성 성분에 미치는 영향)

  • Lee, Gyu-Bin;Choe, Yun-Ui;Park, Eun-Ji;Wang, Ziyu;Li, Mei;Li, Ke;Park, Young-Hoon;Choi, Young-Whan;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.26 no.3
    • /
    • pp.381-392
    • /
    • 2017
  • The present study aimed to investigate the effects of low temperature on the growth, yield, quality, and biologically active compounds of strawberry and obtain basic information for developing a technology for stable growth of strawberry in greenhouses. Growth of strawberry, including leaf number, area, and length, plant height, and dry weight was better at the optimum growth temperature of $20^{\circ}C$ than at a lower temperature of $15^{\circ}C$. At the low temperature of $15^{\circ}C$, the cultivar 'Maehyang' was more tolerant and displayed better growth rate than 'Seolhyang'. At $15^{\circ}C$, the fruit production per week and fruit weight was lower than that at $20^{\circ}C$. In contrast, fruit length and diameter were not significantly different between the two growth temperatures. Growth temperature also did not affect the fruit color index, Hunter L, a, b value, or fruit firmness. However, the sugar content of strawberries grown at $15^{\circ}C$ was higher by 0.8 and 1.5 Brix for 'Seolhyang' and 'Maehyang', respectively, than of those grown at $20^{\circ}C$. There was no difference in the content of fisetin, a biologically active compound, for 'Seolhyang' at both growth temperatures, however, the fisetin content of 'Maehyang' was higher at $20^{\circ}C$ than at $15^{\circ}C$. Cinchonine and ellagic acid content of 'Seolhyang' was higher at $20^{\circ}C$ than at $15^{\circ}C$, whereas that of 'Maehyang' was higher at $15^{\circ}C$ than at $20^{\circ}C$. Quercetin content showed no significant differences with respect to growth temperature, however, it tended to increase at $20^{\circ}C$. The cinnamic acid content of 'Seolhyang' was higher at $15^{\circ}C$ than at $20^{\circ}C$, whereas that of 'Maehyang' increased at $20^{\circ}C$. Collectively, the biologically active compounds of strawberry were affected by growth temperature. Moreover, the content of these compounds tended to increase at $20^{\circ}C$, the optimum growth temperature, rather than at the sub-optimal growth temperature of $15^{\circ}C$.

Influence of Defoliation by Marssonina Blotch on Vegetative Growth and Fruit Quality in 'Fuji'/M.9 Apple Tree (갈색무늬병에 의한 낙엽이 '후지'/M.9 사과나무의 수체생장 및 과실품질에 미치는 영향)

  • SaGong, Dong-Hoon;Kweon, Hun-Joong;Song, Yang-Yik;Park, Moo-Yong;Nam, Jong-Chul;Kang, Seok-Beom;Lee, Sang-Gyu
    • Horticultural Science & Technology
    • /
    • v.29 no.6
    • /
    • pp.531-538
    • /
    • 2011
  • This study was carried out to investigate the influence of defoliation by Marssonina blotch (Diplocarpon mali Harada et Sawamura) on vegetative growth and fruit quality in 'Fuji'/M.9 apple tree. Soluble solid contents decreased when the defoliation percentage by Marssonina blotch was over 10% before the end of September, and fruit weight decreased when percentage of defoliation was over 30%. Fruit red color and starch contents tend to decrease as percentage of defoliation near the fruit increased. Return bloom, fruit weight, and shoot growth the following year tend to decrease as percentage of defoliation increased. Photosynthetic rate of healthy leaves in bourse shoot during the end of September was maintained about $10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, effects in increasing fruit growth and soluble solid contents after the end of September. Photosynthetic rates for the damaged leaf, damaged area was over 50% on the leaf surface, while 30% of the photosynthetic rates of healthy leaf are without damage applied with Marssonina blotch at the end of September. The results show that the decrease of fruit quality in defoliation treatments may be caused by the decrease of starch contents in fruit, and that was caused by the photosynthetic rates of leaves near fruit was decreased by Marssonina blotch in the wake of August.