References
- Abeles, F.B. and C.L. Biles. 1991. Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol. 95:269-273. https://doi.org/10.1104/pp.95.1.269
- Bandurski, R.S., A. Schulze, A. Leznicki, D. Reinecke, P. Jensen, M. Desrosiers, and B. Epel. 1988. Regulation of the amount of IAA in seedling plants, p. 21-32. In: Kutacek M, R.S. Bandurski, and J. Krekule, (eds) Physiology and biochemistry of auxins in plants. Academia, Prague.
- Bonghi, C., L. Trainotti, A. Botton, A. Tadiello, A. Rasori, F. Ziliotto, V. Zaffalon, G. Casadoro, and A. Ramina. 2011. A microarray approach to identify genes involved in seed-pericarp cross-talk and development in peach. BMC Plant Biol. 11:107. https://doi.org/10.1186/1471-2229-11-107
-
Chen, D., Y. Ren, Y. Deng, and J. Zhao. 2010. Auxin polar transport is essential for the development of zygote and embryo in Nicotiana tabacum L. and correlated with ABP1 and PM
$H^+$ -ATPase activities. J. Exp. Bot. 61:1853-1867. https://doi.org/10.1093/jxb/erq056 - Dong, N.G., D. Pei, and W.L. Yin. 2012. Tissue-specific localization and dynamic changes of endogenous IAA during poplar leaf rhizogenesis revealed by in situ immunohistochemistry. Plant Biotechnol. Rep. 6:165-174. https://doi.org/10.1007/s11816-011-0209-9
- Elobeid, M., C. Gobel, L. Feussner, and A. Polle. 2012. Cadmium interferes with auxin physiology and lignification in polar. J. Exp. Bot. 63:1413-1421. https://doi.org/10.1093/jxb/err384
- Goetz, M., L.C. Hooper, S.D. Johnson, J.C.M. Rodrigues, A. Vivian-Smit, and A.M. Koltunow. 2007. Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol. 145:351-366. https://doi.org/10.1104/pp.107.104174
- Hou, Z.X. and W.D. Huang. 2005. Immunohistochemical localization of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 222:678-687. https://doi.org/10.1007/s00425-005-0014-1
- Hou, Z.X. and W.D. Huang. 2004. Immunochemical localization of IAA and ABP1 in development Strawberry fruit. J. Hort. Sci. Biotechnol. 79: 693-698.
- Kalluri, U.C., M.M. Basu, S.S. Jawdy, and G.A. Tuskan. 2011. Auxin signaling and response mechanisms and roles in plant growth and development. Genetics, Genomics and Breeding of Poplar, p 231-254.
- Liu, D.J., J.Y. Chen, and W.J. Lu. 2011. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development, Mol. Biol. Rep. 38:1187-1193. https://doi.org/10.1007/s11033-010-0216-x
- Liu, S.C., W.Q. Chen, L. Qu, Y. Gai, and X.N. Jiang. 2013. Simultaneous determination of 24 or more acidic and alkaline phytohormones in femtomole quantities of plant tissues by high-performance liquid chromatography-electrospray ionizationion trap mass spectrometry. Anal. Bioanul. Chem. 405:1257-1266. https://doi.org/10.1007/s00216-012-6509-2
- Miller, A.N., C.S. Walsh, and J.D. Cohen. 1987. Measurement of indole-3-acetic acid in peach fruits (Prunus persica L. Batsch cv.Redhaven) during development. Plant Physiol. 84:491-494. https://doi.org/10.1104/pp.84.2.491
- Molesini, B., T. Pandolfini, G.L. Rotino, V. Dani, and A. Spena. 2009. Aucsia gene silencing causes parthenocarpic fruit development in tomato. Plant Physiol. 149:534-548. https://doi.org/10.1104/pp.108.131367
- Mounet, F., A. Moing, V. Garcia, J. Petit, M. Maucourt, C. Deborde, S. Bernillon, G. Le Gall, I. Colquhoun, M. Defernez, J.L. Giraudel, D. Rolin, C. Rothan, and M. Lemaire-Chamley. 2009. Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development. Plant Physiol. 149:1505-1528. https://doi.org/10.1104/pp.108.133967
- Paponov, I.A., W.D. Tea, M. Trebar, I. Blilou, and K. Palme. 2005. The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci. 10: 170-177. https://doi.org/10.1016/j.tplants.2005.02.009
- Petrasek, J., K. Malinska, and E. Zazimalova. 2011. Auxin Transporters Controlling Plant Development, p. 255-290. In: Transporters and Pumps in Plant Signaling. Springer Berlin Heidelberg.
- Ruegger, M., E. Dewey, L. Hobbie, D. Brown, P. Bernasconi, J. Turner, G. Muday, and M. Estelle. 1997. Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745-757. https://doi.org/10.1105/tpc.9.5.745
- Sieburth, L.E. 1999. Auxin is required for leaf vein pattern in Arabidopsis. Plant Physiol. 121:1179-1190. https://doi.org/10.1104/pp.121.4.1179
- Thomas, C., R. Bronner, J. Molinier, E. Prinsen, H. Van Onckelen, and G. Hahne. 2002. Immunocytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215:577-583 https://doi.org/10.1007/s00425-002-0791-8
- Torrigiani, P., D. Bressanin, K.B. Ruiz, A. Tadiello, L.Trainotti, C. Bonghi, V. Ziosi, and G. Costa. 2012. Spermidine application to young developing peach fruits leads to a slowing down of ripening by impairing ripening-related ethylene and auxin metabolism and signaling. Physiol. Plant 146:86-98. https://doi.org/10.1111/j.1399-3054.2012.01612.x
- Trainotti, L., A. Tadiello, and G. Casadoro. 2007. The involvement of auxin in the ripening of climacteric fruits comes of age: the hormone plays a role of its own and has an intense interplay with ethylene in ripening peaches. J. Exp. Bot. 58:3299-3308. https://doi.org/10.1093/jxb/erm178
- Vanneste, S. and J. Friml. 2009. Auxin: A trigger for change in plant development. Cell 136:1005-1016. https://doi.org/10.1016/j.cell.2009.03.001
- Verde, I., A. Abbott, S. Simone, et al. 2013. The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat. Genet. 45:487-494. Pages: https://doi.org/10.1038/ng.2586
- Wang, H., B. Jones, Z.G. Li, P. Frasse, C. Delalande, F. Regad, S. Chaabouni, A. Latche, J.C. Pech, and M. Bouzaven. 2005. The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. The Plant Cell 17: 2676-2692. https://doi.org/10.1105/tpc.105.033415
- Yoshida, S., S. Saiga, and D. Weijers. 2012. Auxin regulation of embryonic root formation. Plant Cell Physiol. 54:325-336.
- Zhang, J., Z.M. Liu, H.P. Ma and S.P. Ma. 2009. Studies on anatomy and distribution of the vascular bundles in the peach fruit. Acta Hortic. Sin. 36:639-646. (in Chinese)
Cited by
- regulates lignification during stone cell development in pear fruit pp.14677644, 2019, https://doi.org/10.1111/pbi.12950