• Title/Summary/Keyword: fresh콘크리트

Search Result 502, Processing Time 0.021 seconds

Effect of the Various Combinations of the Binders and the Silica Fume Types to the Physical Properties of the Pre-Mix Cement (프리믹스 시멘트의 물리적 특성에 미치는 결합재조합 및 실리카퓸 종류의 영향)

  • Jin, Cheng-Ri;Kim, Ki-Hoon;Pei, Chang-Chun;Lee, Hai-III;Kim, Sung-Su;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.37-40
    • /
    • 2007
  • This study investigates the effect of the pre-mix cement to the physical properties of the concrete according to the various combinations of the binders and the silica fume types. The results are summarized as following. For the properties of the fresh, the fluidity in the case that OPC+cilica fume-blast-furnace slag is appropriate compared to OPC+cilica fume+fly ash. Expecially, it is favorable when pre-mix is used. The fluidity time of the A, B depending on silica fume types is favorable, but it is decreased on C. The air content depending on silica fume types is low when the fly ash is used. Specially, the air content in the case that pre-mix is used is low caused by the dispersion of the silica fume. For the properties of the hardened concrete, the compressive and flexible strength when the blast-furnace slag is pre-mixed are high, and they exceed OPC. The strength depending on the silica fume types is high on B, and the strength of the others is similar.

  • PDF

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

Improvement in Early Strength of Concrete Using Blast Furnace Slag by KOH (KOH에 의한 고로슬래그 미분말을 사용한 콘크리트의 초기강도 향상)

  • Lee, Ju-Sun;Song, Ri-Fan;Park, Byoung-Kwan;Back, Dae-Hyun;Pei, Chang-Chun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.53-56
    • /
    • 2009
  • This study reviewed the characteristics of concrete made of performance improving mixture materials based on KOH as a means to resolve the problems of initial quality reduction that result in concretes with blast furnace slag powder. Summarizing the results, first as the characteristics of fresh concrete, liquidity was found to reduce in general with increased BS substitution ratio. Objective range of liquidity was not satisfied in all mixes according to the use of performance improving mixture materials. Air capacity was satisfied to the objective range in all mixes. As the characteristics of hardened concrete, while compressive strength showed a decreasing trend with increasing BS substitution ratio at early age, increasing trend was shown by the plain with increasing BS substitution ratio at later age. On the other hand, K1 and K2 were only effective among mixture materials at early age, but K1F30 showed excellent strength at both early and later ages.

  • PDF

Experimental Review on Application of Lightweight UHPC as Repair Mortar and Cement Panel (경량 UHPC의 보수용 모르타르 및 시멘트 패널로서의 활용 가능성에 대한 실험적 검토)

  • Jae Sung Ahn;Hyeong-Ki Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.210-217
    • /
    • 2023
  • Various performances of ultra-high performance concrete (UHPC) applied with microplastics and expanded polystyrene (EPS) beads were evaluated. CompressIve and flexural strength, performance after ignition, flow-down in fresh state, and effective bond strength were evaluated. Designed weight of the cement panel with these mixtures was calculated based on the flexural strength. As a result of the experiments, it was confirmed that the EPS could reduce the density of UHPC with largest range. By maximum addition of EPS beeds, the density of UHPC decreased to 1300 kg/m3, and the compressive and flexural strengths for this mixtures were in ranges of 20-30 MPa and 15-20 MPa, respectively. On the other hand, lightest cement panel could be designed with UHPC having a density ranges about 2.0 g/cm3.

Development of High Performance Curing Agent and Effective Dispersion Method of Nanomaterials (고성능 피막양생제 개발 및 나노물질의 분산방안 평가)

  • Son, Ho-Jung;Yoo, Byung-Hyun;Lee, Dong-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.230-236
    • /
    • 2019
  • Recently, issues related to the quality of concrete have continuously resulted in surface quality problems, such as the exfoliation of concrete surfaces due to the cost reduction of cement and poor quality fine aggregate, scaling of surfaces caused by laitance, and plastic shrinkage cracks. Prompted by social issues, the application of a photo catalyst to road structures is being attempted to solve the environmental problems caused by fine dust and automobile exhaust. In this study, chemical admixtures were developed to improve the surface quality of concrete and to apply and distribute titanium dioxide in nanoscale sizes to provide basic data for the development of a photocatalyst-curing agent. As a result of the experiment, silicon and silane were reviewed as a raw material as a curing agent to develop a high performance curing agent with better film performance than conventional curing agents because they could form a film quickly on a fresh concrete surface. The distributed stability of the ultrasonic disperser showed the best performance through an outdoor test for four weeks to review the dispersion measures for the application of nanomaterials.

Studies on the Effect of Fiber Reinforcing upon Mechanical Properties of Concrete and Crack Mode of Reinforoed Concrete (섬유보강이 콘크리트의 역학적 특성과 철근콘크리트의 균열성상에 미치는 영향에 관한 연구)

  • 박승범
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.2
    • /
    • pp.4645-4687
    • /
    • 1978
  • This study was attempted to investigate the mechanical properties of concrete and crack control effects of reinforced concrete with steel and glass fiber. The experimental program includes tests on the properties of fresh concrete containing fibers, compressive strength, tensile strength, flexural strength, Young's modulus, Shrinkage and deformation of steel or glass fiber reinforced concrete. Also this study was carried out to investigate the effect of steel or glass fiber to retard the development in reinforced concrete subject to uniaxial tension and thus facilitate the use of steels of higher strength. The major conclusions that can be drawn from the studies are as follows: 1. The effect of the fibers in various mixes on fresh concrete confirmed that fibers do have a significant effect on the properties of fresh concrete, bringing much more stable and exhibiting a signiflcant reduction in surface bleeding, and that the cohesion is greatly improved and the internal resistance increases with fiber concentration. But the addition of an excess contents and length of fibers brings about the reduction of workability. 2. With the addition of steel fibers(1.5% Vol.) to concrete, the compressive strength as compared with plain concrete showed a very slight increase, but excess addition, over 1.5% Vol. of steel and glass fiber reduced its strength. 3. Splitting tensile strength of fiber reinforced concrete showed a significant increase tendency, as compared with plain concrete. In case of containing steel fiber (2.5%, 30mm), it showed that the maximum increase rate of 1.48 times as much rate, and in case of containing glass fiber (2.5%, 30mm), the increase rate of strength was 1.25 times as much rate. 4. Flexural strength of fiber reinforced concrete showed a significant tendency, as compared with plain concrete. Containing steel fiber (2.5%, 30mm) showed the maximum increase rate of 1.64 times as much rate and containing glass fiber (2.5%, 30mm) showed the increase rate of strength of 1.32 times as much rate, and in general, the 30mm length brougth the best results. 5. The strength ratio ($\sigma$b/$\sigma$c and $\sigma$t/$\sigma$c) increased, when steel fiber's average spacing was up to 3.05mm, but decreased when beyond 3.05mm, and it was confirmed that tensile or flexural strengths of steel fiber reinforced concrete are apparently governed by fiber's average spacing. 6. The compressive strain of fiber reinforced concrete showed a significant increasing tendency as the fiber was added, but Young's modulus. with the addition of steel and glass fibers, showed a slight decrease tendency. And according to the increase of flexural strength, a considerable increase was seen in toughness. 7. With the addition of fiber's the shrinkage of concrete was significantly decreased, in both case of adding steel fibers 12.5%, 30mm, and showed a significant decrease ratio, in average 30.4% and 36.7%, as compared with plain concrete. 8. With the increase of fiber volume fraction and length, the gained stress in reinforcing bar in concrete specimens increased in all crack widths, but at different rates, with the decrease of fiber diameter, the stress showed a considerable increasing tendency. And the duoform steel fibers showed the greatest improvement, as compared with the other types tested. 9. The influence of fiber dimensions in order of significanse on the machanical properties of concrete and the crack control of reinforced concrete was explained as follows: content, length, aspect ratio and dimeter.

  • PDF

Effect of Hollow Glass Powder on the Self-Compacting Concrete (유공 유리분말이 자기충전 콘크리트의 특성에 미치는 영향)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this study, compacting, passing performance, segregation resistance and rheological properties were tested to improve the stability of fresh concrete in the production and construction of self-compacting concrete (SCC) using hollow glass powder(GB). As a result, T50 reaching time was shortened up to amount of GB $2.0kg/m^3$. The compacting according to the amount of GB was improved by ball bearing effect of GB. However, T50 reaching time was slightly increased at $4.0kg/m^3$. In the case of passing performance, the result showed that plain was Class 1, GB $0.5{\sim}2.0kg/m^3$ was Class 0, GB $4.0kg/m^3$ was Class 1. Therefore, the passing performance was improved with 'No blocking' up to amount of GB $2.0kg/m^3$. Passing performance Block step (PJ) number by J-ring method was also best at GB $1.0kg/m^3$. In the case of segregation resistance according to the amount of GB, dynamic segregation resistance was increased compared to plain regardless of the amount of GB. And static segregation resistance showed 2.5% of segregation rate at GB $1.0kg/m^3$. Therefore, it was greatly improved compared to plain (12.5%). In the case of rheology property according to the amount of GB, plastic consistency by increasing of GB content didn't show big difference. However, yield stress by increasing of GB content was decreased with GB $1.0kg/m^3$. In conclusion, GB $1.0kg/m^3$ was effective for improvement of compacting, passing performance and yield stress. Also, it will be useful for stability of SCC by improving segregation.

Quality Improvement of High Volume Fly Ash Concrete due to Early Strength Gain Admixture (조강형 혼화제에 의한 플라이애시 다량 치환 콘크리트의 품질 향상)

  • Han, Cheon-Goo;Park, Jong-Ho;Lee, Joung-Ah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.117-124
    • /
    • 2009
  • The purpose of the study was to improve quality of high volume fly ash concrete. The study evaluated on the possibility of early quality improvement of high volume fly ash concrete with early strength gain admixture ('GA' below) developed by the preceding research. The study regarded applying naphthalene admixture ('NA' below) to mix proportion substituting FA 15 % to be plain. In the event of substituting FA 20, 25 and 30 %, the study compared engineering properties of concrete with plain by applying GA. Because of features of fresh concrete, fluidity falls down when GA is applied. Therefore, its use amount shall be increased. Only, in W/B 60 %, it was beneficial since slump loss was reduced about 35~70 mm than plain. The study could see that AE use should be increased proportionally since air content was reduced by coming from AE absorption operation of unburned coal content included in FA according to an increase in the amount of FA use. Reduction effect of bleeding could be anticipated since the amount of bleeding appeared at least in FA 20 %. Because of hardened concrete, time of setting appeared in the same level as plain when GA was applied. Therefore, it is judged that delay of setting can be reduced. In compressive strength, the study could check the same strength development as plain when GA was applied, having nothing to do with W/B and curing temperature. However, it is thought that we shall pay attention to GA use in the event of FA 30 % substitution. Freezing and melting resistance had less early value than plain. However, it is judged that there will be no problem of frost resistance since there is no a large difference between freezing and melting resistance and plain in overall. In accelerated neutralization, it was analyzed that a problem of weakening in neutralization appointed as a demerit when FA was applied in mass in proportion with GA use could be settled to some extent.

  • PDF

A study on the Development of a Drying and Fermentation Process of Domestic Animal Manure;II. Demonstration of a Pig Manure Treatment System on a Farm (가축분(家畜糞) 건조(乾燥) , 발효(醱酵) 복합시설(複合施設) 개발(開發) 연구(硏究);II. 돈분(豚糞) 건조(乾燥), 발효(醱酵), 복합시설(複合施設) 실증시험(實證試驗))

  • Yun, Sun-Gang;Jung, Kwang-Yong;Park, Woo-Kun;Kwon, Sun-Ik;Park, Hong-Jae;Yoo, Sun-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.223-230
    • /
    • 1994
  • A practical study on a drying and fermentation system equipped with a stirring machine operated mechanically, of pig manure was conducted to prove the efficiency of and practicability to an ordinary pig farm. The type of the drying bed was a round-shaped (r=3m) concrete structure and the stirring machine was adopted to stir and transfer dried pig manure to the fermentation tank. The dried pig manure was put into a fermentation tank ($V=18m^3$), which was aerated from pipe lines installed at the bottom. While water content of pig manure passing through a drying bed was remarkably reduced than before drying, the drying efficiency of this system decreased in winter. However, the temperature of pig manure piled up in the fermentation room in winter reached over $60^{\circ}C$ and excess water of pig manure was removed during the fermentation process. The reduction rate of water content of pig manure, to which dried pig manure was added as bulking material on the drying bed, was 52.1%, but when dried without bulking material it was only 19.7%. Although the content of $P_2O_5$ of dried pig manure was slightly higher than that of fresh pig manure, progressive changes in chemical composition between fresh and dried pig manure made no great difference. Among the contents of minerals of fresh and dried pig manure, CaO was the highest and the rest were in the decreasing order of $K_2O$, MgO, and $Na_2O$. Population density of E. coli and Streptococci of dried pig manure was reduced by 142 and 236 times that of fresh pig manure, respectively. The installation cost of this drying and fermentation system was 4,185,630 won (approximately 5,232 US $) and operating cost per year was 190,000 won (237.5US $) on the basis of self-labor condition.

  • PDF

Evaluation of NOx Removal Efficiency of Photocatalytic Concrete for Road Structure (도로구조물 적용을 위한 광촉매 콘크리트의 질소산화물(NOx) 제거효율 평가)

  • Kim, Young Kyu;Hong, Seong Jae;Lee, Kyung Bae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.49-58
    • /
    • 2014
  • PURPOSES : In areas of high traffic volume, such as expressway across large cities, the amount of nitrogen oxides (NOx) emitted into the atmosphere as air pollution can be significant since NOx gases are the major cause of smog and acid rain. Recently, the importance of NOx removal has arisen in the world. Titanium dioxide ($TiO_2$), that is one of photocatalytic reaction material, is very efficient for removing NOx. The NOx removing mechanism of $TiO_2$ is the reaction of solar photocatalysis. Therefore, $TiO_2$ in road structure concrete need to be contacted with ultraviolet rays (UV) to be activated. In general, $TiO_2$ concretes are produced by replacement of $TiO_2$ as a part of concrete binder. However, considerable portion of $TiO_2$ in concrete cannot contact with the pollutant in the air and UV. Therefore, $TiO_2$ penetration method using the surface penetration agents is attempted as an alternative in order to locate $TiO_2$ to the surface of concrete structure. METHODS : This study aimed to evaluate the NOx removal efficiency of photocatalytic concrete due to various $TiO_2$ application method such as mix with $TiO_2$, surface spray($TiO_2$ penetration method) on hardened concrete and fresh concrete using surface penetration agents. The NOx removal efficiency of $TiO_2$ concrete was confirmed by NOx Analyzing System based on the specification of ISO 22197-1. RESULTS : The NOx removal efficiency of mix with $TiO_2$ increased from 11 to 25% with increasing of replacement ratio from 3 to 7%. In case of surface spray on hardened concrete, the NOx removal efficiency was about 50% due to application amount of $TiO_2$ with surface penetration agents as 300, 500 and 700g/m2. The NOx removal efficiency of surface spray on fresh concrete due to all experimental conditions, on the other hand, which was very low within 10%. CONCLUSIONS : It was known that the $TiO_2$ penetration method as surface spray on hardened concrete was a good alternative in order to remove the NOx gases for concrete road structures.