• Title/Summary/Keyword: frequency equations

Search Result 1,497, Processing Time 0.036 seconds

Application of Hamilton variational principle for vibration of fluid filled structure

  • Khaled Mohamed Khedher;Muzamal Hussain;Rizwan Munir;Saleh Alsulamy;Ayed Eid Alluqmani
    • Advances in nano research
    • /
    • v.15 no.5
    • /
    • pp.401-410
    • /
    • 2023
  • Vibration investigation of fluid-filled three layered cylindrical shells is studied here. A cylindrical shell is immersed in a fluid which is a non-viscous one. Shell motion equations are framed first order shell theory due to Love. These equations are partial differential equations which are usually solved by approximate technique. Robust and efficient techniques are favored to get precise results. Employment of the wave propagation approach procedure gives birth to the shell frequency equation. Use of acoustic wave equation is done to incorporate the sound pressure produced in a fluid. Hankel's functions of second kind designate the fluid influence. Mathematically the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. It is also exhibited that the effect of frequencies is investigated by varying the different layers with constituent material. The coupled frequencies changes with these layers according to the material formation of fluid-filled FG-CSs. Throughout the computation, it is observed that the frequency behavior for the boundary conditions follow as; clamped-clamped (C-C), simply supported-simply supported (SS-SS) frequency curves are higher than that of clamped-simply (C-S) curves. Expressions for modal displacement functions, the three unknown functions are supposed in such way that the axial, circumferential and time variables are separated by the product method. Computer software MATLAB codes are used to solve the frequency equation for extracting vibrations of fluid-filled.

An Implementation Method of Linearized Equations of Motion for Multibody Systems with Closed Loops

  • Bae, D.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.2
    • /
    • pp.71-78
    • /
    • 2003
  • This research proposes an implementation method of linearized equations of motion for multibody systems with closed loops. The null space of the constraint Jacobian is first pre-multiplied to the equations of motion to eliminate the Lagrange multiplier and the equations of motion are reduced down to a minimum set of ordinary differential equations. The resulting differential equations are functions of all relative coordinates, velocities, and accelerations. Since the variables are tightly coupled by the position, velocity, and acceleration level coordinates, direct substitution of the relationships among these variables yields very complicated equations to be implemented. As a consequence, the reduced equations of motion are perturbed with respect to the variations of all variables, which are coupled by the constraints. The position velocity and acceleration level constraints are also perturbed to obtain the relationships between the variations of all relative coordinates, velocities, and accelerations and variations of the independent ones. The Perturbed constraint equations are then simultaneously solved for variations of all variables only in terms of the variations of the independent variables. Finally, the relationships between the variations of all variables and these of the independent ones are substituted into the variational equations of motion to obtain the linearized equations of motion only in terms of the independent variables variations.

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren;Chen, Chun-Sheng;Yu, Szu-Ying
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.367-383
    • /
    • 2011
  • In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.

Physical insight into Timoshenko beam theory and its modification with extension

  • Senjanovic, Ivo;Vladimir, Nikola
    • Structural Engineering and Mechanics
    • /
    • v.48 no.4
    • /
    • pp.519-545
    • /
    • 2013
  • An outline of the Timoshenko beam theory is presented. Two differential equations of motion in terms of deflection and rotation are comprised into single equation with deflection and analytical solutions of natural vibrations for different boundary conditions are given. Double frequency phenomenon for simply supported beam is investigated. The Timoshenko beam theory is modified by decomposition of total deflection into pure bending deflection and shear deflection, and total rotation into bending rotation and axial shear angle. The governing equations are condensed into two independent equations of motion, one for flexural and another for axial shear vibrations. Flexural vibrations of a simply supported, clamped and free beam are analysed by both theories and the same natural frequencies are obtained. That fact is proved in an analytical way. Axial shear vibrations are analogous to stretching vibrations on an axial elastic support, resulting in an additional response spectrum, as a novelty. Relationship between parameters in beam response functions of all type of vibrations is analysed.

Vibration and Damping Characteristics of Viscoelastically Damped Sandwich Plates (점탄성층이 샌드위치된 복합적층판의 진동감쇠 특성)

  • 김재호;박태학;신현정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2252-2263
    • /
    • 1993
  • The purpose of this study is to verify the vibration and damping characteristics of elastic-viscoelastic-elastic structures, theoretically and experimentally. The forth-order differential equations of motion are derived for the transverse vibration of three-layered plates with viscoelastic core layer. The equations consider both transverse displacements of the constraining layer and the bare base plate as variable and account for the effect of the transverse normal strain and the shear strain of viscoelastic core layer on the vibration of the plates. Finite difference analysis of the equations and experimental measurements are performed on the three-layered plates of completely free boundary condition. Comparative investigations on the theory and the results of direct frequency analysis of NASTRAN are carried out on the same structures.

Vibration of nonlocal perforated nanobeams with general boundary conditions

  • Eltaher, Mohamed A.;Mohamed, Norhan A.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.501-514
    • /
    • 2020
  • This article presents a comprehensive model to investigate a free vibration and resonance frequencies of nanostructure perforated beam element as nano-resonator. Nano-scale size dependency of regular square perforated beam is considered by using nonlocal differential form of Eringen constitutive equation. Equivalent mass, inertia, bending and shear rigidities of perforated beam structure are developed. Kinematic displacement assumptions of both Timoshenko and Euler-Bernoulli are assumed to consider thick and thin beams, respectively. So, this model considers the effect of shear on natural frequencies of perforated nanobeams. Equations of motion for local and nonlocal elastic beam are derived. After that, analytical solutions of frequency equations are deduced as function of nonlocal and perforation parameters. The proposed model is validated and verified with previous works. Parametric studies are performed to illustrate the influence of a long-range atomic interaction, hole perforation size, number of rows of holes and boundary conditions on fundamental frequencies of perforated nanobeams. The proposed model is supportive in designing and production of nanobeam resonator used in nanoelectromechanical systems NEMS.

Application of the Equivalent Frequency Response Method to Runoff Analysis

  • Fujita, Mutsuhiro;Hamouda, Ruai;Tanaka, Gaku
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.S1
    • /
    • pp.101-110
    • /
    • 2000
  • This paper introduces the equivalent frequency response method(EFRM) into runoff analysis. This EFRM originally had been developed to analyze dynamic behavior of nonlinear elements such as threshold and saturation in control engineering. Many runoff models are described by nonlinear ordinary of partial differential equations This paper presents that these nonlinear differential equations can be converted into semi-linear ones based on EFRM. The word of "a semi-linear equation" means that the coefficients of derived equations depend on average rainfall.

  • PDF

The Effect of Neglecting the Longitudinal Moment Terms on the Natural Frequency of Laminated Plates with Increasing Aspect Ratio (보강재 보강 형태에 따른 특별직교 이방성 적층복합판의 고유진동수에 대한 종방향 모멘트 무시효과)

  • 김덕현;김경진;이정호;박정호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.109-116
    • /
    • 1998
  • The method of vibration analysis used is the one developed by the senior author. He developed and reported, in 1974, a simple but exact method of calculating the natural frequency of beam and tower structures with irregular cross-sections and attached mass/masses. Since 1989, this method has been extended to two-dimensional problems with several types of given conditions and has been reported at several international conferences. This method uses the deflection influence surfaces. The finite difference method is used for this purpose, in this paper. In order to reduce the pivotal points required, the three simultaneous partial differential equations of equilibrium with three dependent variables, w, M$_{x}$, and $M_{y}$, are used instead of the one forth order partial differential equation. By neglecting the M$_{x}$ terms, the size of the matrices needed to solve the resulting linear equations are reduced to two thirds of the "non-modified" equations.tions.

  • PDF

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

Application of the Equivalent Frequency Response Method to Runoff Analysis

  • Mutsuhiro Fujita;Ruai Hamouda;Gaku Tanaka
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2000.05a
    • /
    • pp.1-2
    • /
    • 2000
  • This paper introduces the equivalent frequency response method (EFRM) into runoff analysis. This EFRM originally had been developed to analyze dynamic behavior of nonlinear elements such as threshold and saturation in control engineering. Many runoff models are described by nonlinear ordinary or partial differential equations. This paper presents that these nonlinear differential equations can be converted into semi-linear ones based on EFRM. The word of “a semi-linear equation” means that the coefficients of derived equations depend on average rainfall

  • PDF