DOI QR코드

DOI QR Code

Nonlinear vibration of hybrid composite plates on elastic foundations

  • Chen, Wei-Ren (Department of Mechanical Engineering, Chinese Culture University) ;
  • Chen, Chun-Sheng (Department of Mechanical Engineering, Lunghwa University of Science and Technology) ;
  • Yu, Szu-Ying (Department of Electrical Engineering, Lee Ming Institute of Technology)
  • Received : 2010.07.13
  • Accepted : 2010.10.20
  • Published : 2011.02.25

Abstract

In this paper, nonlinear partial differential equations of motion for a hybrid composite plate subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress in the example problems. The governing equations of motion are reduced to the time-dependent ordinary differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are investigated and discussed.

Keywords

References

  1. Amabili, M. and Farhadi, S. (2009), "Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates", J. Sound Vib., 320, 649-667. https://doi.org/10.1016/j.jsv.2008.08.006
  2. Ayvaz, Y. and Oguzhan, C.B. (2008), "Free vibration analysis of plates resting on elastic foundations using modified Vlasov model", Struct. Eng. Mech., 28, 635-658. https://doi.org/10.12989/sem.2008.28.6.635
  3. Barai, A. and Durvasula, S. (1992), "Vibration and buckling of hybrid laminated curved panels", Comput. Struct., 21, 15-27. https://doi.org/10.1016/0263-8223(92)90076-O
  4. Benjeddou, A., Deu, J.F. and Letombe, S. (2002), "Free vibrations of simply-supported piezoelectric adaptive plates: An exact sandwich formulation", Thin Wall. Struct., 40, 573-593. https://doi.org/10.1016/S0263-8231(02)00013-7
  5. Brunell, E.J. and Robertson, S.R. (1976), "Vibrations of an initially stressed thick", J. Sound Vib., 45, 405-416. https://doi.org/10.1016/0022-460X(76)90395-3
  6. Chen, C.S. (2007), "Analysis of nonlinear vibration of composite laminated plate", Comput. Part B-Eng., 38, 437-447. https://doi.org/10.1016/j.compositesb.2006.09.002
  7. Chen, C.S., Chen, W.R. and Chien, R.D. (2009), "Stability of parametric vibrations of hybrid laminated plates", Eur. J. Mech. A-Solid., 28, 329-337. https://doi.org/10.1016/j.euromechsol.2008.06.004
  8. Chen, C.S., Cheng, W.S. and Tan, A.H. (2005), "Nonlinear vibration of initially stresses plates with initial imperfections", Thin Wall. Struct., 43, 33-45. https://doi.org/10.1016/j.tws.2004.08.004
  9. Chen, C.S. and Fung, C.P. (2004), "Nonlinear vibration of an initially stressed hybrid composite plates", J. Sound Vib., 274, 1013-1029. https://doi.org/10.1016/S0022-460X(03)00661-8
  10. Chen, C.S., Fung, C.P. and Chien, R.D. (2007), "Nonlinear vibration of an initially stressed laminated plate according a higher order theory", Comput. Struct., 77, 521-532. https://doi.org/10.1016/j.compstruct.2005.08.004
  11. Chen, C.S., Fung, C.P. and Yang, J.G. (2009), "Assessment of plate theories for initially stressed hybrid laminated plates", Comput. Struct., 88, 195-201. https://doi.org/10.1016/j.compstruct.2008.03.034
  12. Chen, C.S., Hwang, J.R. and Doong, J.L. (2001), "Large amplitude vibration of plates according to a modify higher order deformation", Int. J. Solids Struct., 38, 8563-8583. https://doi.org/10.1016/S0020-7683(00)00226-2
  13. Chen, Y., Lu, K., Zhou, T., Liu, T. and Lu, C. (2006), "Study of a mini-ultrasonic motor with square metal bar and piezoelectric plate hybrid", Japanese J. Appl. Phys., 45, 4780-4781. https://doi.org/10.1143/JJAP.45.4780
  14. Cheung, Y.K., Zhu, D.S. and Iu, V.P. (1998), "Nonlinear vibration of thin plates with initial stress by spline finite strip method", Thin Wall. Struct., 32, 275-287. https://doi.org/10.1016/S0263-8231(98)00022-6
  15. Chien, R.D. and Chen, C.S. (2006), "Nonlinear vibration of laminated plates on an elastic foundation", Thin Wall. Struct., 44, 852-860. https://doi.org/10.1016/j.tws.2006.08.016
  16. Darilmaz, K. (2009), "An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation", Struct. Eng. Mech., 33, 573-588. https://doi.org/10.12989/sem.2009.33.5.573
  17. Dumir, P.C., Kumari, P. and Kapuria (2009), "Assessment of third order smeared and zigzag theories for buckling and vibration of flat angle-ply hybrid piezoelectric panels", Comput. Struct., 90, 346-362. https://doi.org/10.1016/j.compstruct.2009.03.019
  18. Garg, N. (2007), "Effect of initial stress on harmonic plane homogeneous waves in viscoelastic anisotropic media", J. Sound Vib., 303, 515-525. https://doi.org/10.1016/j.jsv.2007.01.013
  19. Harras, B., Benamar, R. and White, R.G. (2002), "Geometrically non-linear free vibration of fully clamped symmetrically laminated rectangular composite plates", J. Sound Vib., 251, 579-619. https://doi.org/10.1006/jsvi.2001.3713
  20. Harras, B., Benamar, R. and White, R.G.. (2002), "Experimental and theoretical investigation of the linear and non-linear dynamic behaviour of a glare 3 hybrid composite panel", J. Sound Vib., 252, 281-315. https://doi.org/10.1006/jsvi.2001.3962
  21. Huang, H.L. and Shen, H.S. (2005), "Nonlinear free and forced vibration of simply supported shear deformable laminated plates with piezoelectric actuators", Int. J. Mech. Sci., 47, 187-208. https://doi.org/10.1016/j.ijmecsci.2005.01.003
  22. Ibrahim, H.H., Yoo, H.H. and Lee, K.S. (2009), "Aero-thermo-mechanical characteristics of imperfect shape memory alloy hybrid composite panels", J. Sound Vib., 325, 583-596. https://doi.org/10.1016/j.jsv.2009.03.027
  23. Kapuria, S. and Achary, G.G.S. (2005), "Exact 3D piezoelasticity solution of hybrid cross-ply plates with damping under harmonic electro-mechanical load", J. Sound Vib., 282, 617-634. https://doi.org/10.1016/j.jsv.2004.03.030
  24. Kapuria, S. and Achary, G.G.S. (2008), "Benchmark 3D solution and assessment of a zigzag theory for free vibration of hybrid plates under initial electrothermomechanical stresses", Comput. Sci. Tech., 68, 297-311. https://doi.org/10.1016/j.compscitech.2007.01.017
  25. Kazanci, Z. and Mecitoglu, Z. (2006), "Nonlinear damped vibrations of a laminated composite plate subjected to blast load", AIAA J., 44, 2002-2008. https://doi.org/10.2514/1.17620
  26. Lal, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., 27, 199-222. https://doi.org/10.12989/sem.2007.27.2.199
  27. Lal, A., Singh, B.N. and Kumar, R. (2008), "Nonlinear free vibration of laminated composite plates on elastic foundation with random system properties", Int. J. Mech. Sci., 50, 1203-1212. https://doi.org/10.1016/j.ijmecsci.2008.04.002
  28. Lee, Y.S. and Kim, Y.W. (1996), "Analysis of nonlinear vibration of hybrid composite plates", Comput. Struct., 61, 573-578. https://doi.org/10.1016/0045-7949(96)00055-7
  29. Lu, H.X. and Li, J.Y. (2009), "Analysis of an initially stressed laminated plate based on elasticity theory," Comput. Struct., 88, 271-279. https://doi.org/10.1016/j.compstruct.2008.04.001
  30. Muthurajan, K.G., Sankaranarayanasamy, K., Tiwari, S.B. and Nageswara Rao B. (2005), "Nonlinear vibration analysis of initially stressed thin laminated rectangular plates on elastic foundations", J. Sound Vib., 282, 949-996. https://doi.org/10.1016/j.jsv.2004.03.047
  31. Onkar, A.K. and Yadav, D. (2005), "Forced nonlinear vibration of laminated composite plates with random material properties", Comput. Struct., 70, 334-342. https://doi.org/10.1016/j.compstruct.2004.08.037
  32. Ossadzow, C. and Touratier, M. (2003), "Multilayered piezoelectric refined plate theory", AIAA J., 41, 90-99. https://doi.org/10.2514/2.1917
  33. Patel, B.P., Ganapathi, M. and Touratier, M. (1999), "Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation", Comput. Struct., 46, 189-196. https://doi.org/10.1016/S0263-8223(99)00054-9
  34. Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Comput. Struct., 56, 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
  35. Polit, O. and Touratier, M. (2000), "Higher-order triangular sandwich plate finite element for linear and nonlinear analyses", Comput. Meth. Appl. Mech. Eng., 185, 305-324. https://doi.org/10.1016/S0045-7825(99)00264-9
  36. Sinfh, A.V. (2000), "Linear and Geometrically nonlinear vibrations of fiber reinforced laminated plates and shallow shells", Comput. Struct., 76, 277-285. https://doi.org/10.1016/S0045-7949(99)00155-8
  37. Singha, M.K. and Daripa, R.(2007), "Nonlinear vibration of symmetrically laminated composite skew plates by finite element method", Int. J. Nonlin. Mech., 42, 1144-1152. https://doi.org/10.1016/j.ijnonlinmec.2007.08.001
  38. Topdar, P., Sheikh, A.H. and Dhang, N. (2007), "Vibration characteristics of composite/sandwich laminates with piezoelectric layers using a refined hybrid plate model", Int. J. Mech. Sci., 49, 1193-1203. https://doi.org/10.1016/j.ijmecsci.2007.04.001
  39. Xu, K., Amed, K. and Tang, Y.Y. (1997), "Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates", Comput. Meth. Appl. Mech. Eng., 141, 125-39. https://doi.org/10.1016/S0045-7825(96)01065-1
  40. Ye, M., Sun, Y., Zhang, W., Zhan, X. and Ding, Q. (2005), "Nonlinear oscillations and chaotic dynamics of an antisymmetric cross-ply laminated composite rectangular thin plate under parametric excitation", J. Sound Vib., 287, 723-758. https://doi.org/10.1016/j.jsv.2004.11.028

Cited by

  1. A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation vol.272, 2014, https://doi.org/10.1016/j.cma.2014.01.009
  2. Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid vol.50, pp.1, 2014, https://doi.org/10.12989/sem.2014.50.1.053
  3. Design of isolated footings of circular form using a new model vol.52, pp.4, 2014, https://doi.org/10.12989/sem.2014.52.4.767
  4. Hygrothermal Effects on Dynamic Instability of Hybrid Composite Plates vol.17, pp.01, 2017, https://doi.org/10.1142/S0219455417500018
  5. Nonlinear vibration of hybrid laminated plates resting on elastic foundations in thermal environments vol.36, pp.12, 2012, https://doi.org/10.1016/j.apm.2012.02.001
  6. Bending of a rectangular plate resting on a fractionalized Zener foundation vol.52, pp.6, 2014, https://doi.org/10.12989/sem.2014.52.6.1069
  7. Design of boundary combined footings of trapezoidal form using a new model vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.745
  8. A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation vol.42, 2014, https://doi.org/10.1016/j.enganabound.2013.11.008
  9. Buckling and vibration of laminated composite circular plate on winkler-type foundation vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.001
  10. A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.417