References
- Amabili, M. and Farhadi, S. (2009), "Shear deformable versus classical theories for nonlinear vibrations of rectangular isotropic and laminated composite plates", J. Sound Vib., 320, 649-667. https://doi.org/10.1016/j.jsv.2008.08.006
- Ayvaz, Y. and Oguzhan, C.B. (2008), "Free vibration analysis of plates resting on elastic foundations using modified Vlasov model", Struct. Eng. Mech., 28, 635-658. https://doi.org/10.12989/sem.2008.28.6.635
- Barai, A. and Durvasula, S. (1992), "Vibration and buckling of hybrid laminated curved panels", Comput. Struct., 21, 15-27. https://doi.org/10.1016/0263-8223(92)90076-O
- Benjeddou, A., Deu, J.F. and Letombe, S. (2002), "Free vibrations of simply-supported piezoelectric adaptive plates: An exact sandwich formulation", Thin Wall. Struct., 40, 573-593. https://doi.org/10.1016/S0263-8231(02)00013-7
- Brunell, E.J. and Robertson, S.R. (1976), "Vibrations of an initially stressed thick", J. Sound Vib., 45, 405-416. https://doi.org/10.1016/0022-460X(76)90395-3
- Chen, C.S. (2007), "Analysis of nonlinear vibration of composite laminated plate", Comput. Part B-Eng., 38, 437-447. https://doi.org/10.1016/j.compositesb.2006.09.002
- Chen, C.S., Chen, W.R. and Chien, R.D. (2009), "Stability of parametric vibrations of hybrid laminated plates", Eur. J. Mech. A-Solid., 28, 329-337. https://doi.org/10.1016/j.euromechsol.2008.06.004
- Chen, C.S., Cheng, W.S. and Tan, A.H. (2005), "Nonlinear vibration of initially stresses plates with initial imperfections", Thin Wall. Struct., 43, 33-45. https://doi.org/10.1016/j.tws.2004.08.004
- Chen, C.S. and Fung, C.P. (2004), "Nonlinear vibration of an initially stressed hybrid composite plates", J. Sound Vib., 274, 1013-1029. https://doi.org/10.1016/S0022-460X(03)00661-8
- Chen, C.S., Fung, C.P. and Chien, R.D. (2007), "Nonlinear vibration of an initially stressed laminated plate according a higher order theory", Comput. Struct., 77, 521-532. https://doi.org/10.1016/j.compstruct.2005.08.004
- Chen, C.S., Fung, C.P. and Yang, J.G. (2009), "Assessment of plate theories for initially stressed hybrid laminated plates", Comput. Struct., 88, 195-201. https://doi.org/10.1016/j.compstruct.2008.03.034
- Chen, C.S., Hwang, J.R. and Doong, J.L. (2001), "Large amplitude vibration of plates according to a modify higher order deformation", Int. J. Solids Struct., 38, 8563-8583. https://doi.org/10.1016/S0020-7683(00)00226-2
- Chen, Y., Lu, K., Zhou, T., Liu, T. and Lu, C. (2006), "Study of a mini-ultrasonic motor with square metal bar and piezoelectric plate hybrid", Japanese J. Appl. Phys., 45, 4780-4781. https://doi.org/10.1143/JJAP.45.4780
- Cheung, Y.K., Zhu, D.S. and Iu, V.P. (1998), "Nonlinear vibration of thin plates with initial stress by spline finite strip method", Thin Wall. Struct., 32, 275-287. https://doi.org/10.1016/S0263-8231(98)00022-6
- Chien, R.D. and Chen, C.S. (2006), "Nonlinear vibration of laminated plates on an elastic foundation", Thin Wall. Struct., 44, 852-860. https://doi.org/10.1016/j.tws.2006.08.016
- Darilmaz, K. (2009), "An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation", Struct. Eng. Mech., 33, 573-588. https://doi.org/10.12989/sem.2009.33.5.573
- Dumir, P.C., Kumari, P. and Kapuria (2009), "Assessment of third order smeared and zigzag theories for buckling and vibration of flat angle-ply hybrid piezoelectric panels", Comput. Struct., 90, 346-362. https://doi.org/10.1016/j.compstruct.2009.03.019
- Garg, N. (2007), "Effect of initial stress on harmonic plane homogeneous waves in viscoelastic anisotropic media", J. Sound Vib., 303, 515-525. https://doi.org/10.1016/j.jsv.2007.01.013
- Harras, B., Benamar, R. and White, R.G. (2002), "Geometrically non-linear free vibration of fully clamped symmetrically laminated rectangular composite plates", J. Sound Vib., 251, 579-619. https://doi.org/10.1006/jsvi.2001.3713
- Harras, B., Benamar, R. and White, R.G.. (2002), "Experimental and theoretical investigation of the linear and non-linear dynamic behaviour of a glare 3 hybrid composite panel", J. Sound Vib., 252, 281-315. https://doi.org/10.1006/jsvi.2001.3962
- Huang, H.L. and Shen, H.S. (2005), "Nonlinear free and forced vibration of simply supported shear deformable laminated plates with piezoelectric actuators", Int. J. Mech. Sci., 47, 187-208. https://doi.org/10.1016/j.ijmecsci.2005.01.003
- Ibrahim, H.H., Yoo, H.H. and Lee, K.S. (2009), "Aero-thermo-mechanical characteristics of imperfect shape memory alloy hybrid composite panels", J. Sound Vib., 325, 583-596. https://doi.org/10.1016/j.jsv.2009.03.027
- Kapuria, S. and Achary, G.G.S. (2005), "Exact 3D piezoelasticity solution of hybrid cross-ply plates with damping under harmonic electro-mechanical load", J. Sound Vib., 282, 617-634. https://doi.org/10.1016/j.jsv.2004.03.030
- Kapuria, S. and Achary, G.G.S. (2008), "Benchmark 3D solution and assessment of a zigzag theory for free vibration of hybrid plates under initial electrothermomechanical stresses", Comput. Sci. Tech., 68, 297-311. https://doi.org/10.1016/j.compscitech.2007.01.017
- Kazanci, Z. and Mecitoglu, Z. (2006), "Nonlinear damped vibrations of a laminated composite plate subjected to blast load", AIAA J., 44, 2002-2008. https://doi.org/10.2514/1.17620
- Lal, A., Singh, B.N. and Kumar, R. (2007), "Natural frequency of laminated composite plate resting on an elastic foundation with uncertain system properties", Struct. Eng. Mech., 27, 199-222. https://doi.org/10.12989/sem.2007.27.2.199
- Lal, A., Singh, B.N. and Kumar, R. (2008), "Nonlinear free vibration of laminated composite plates on elastic foundation with random system properties", Int. J. Mech. Sci., 50, 1203-1212. https://doi.org/10.1016/j.ijmecsci.2008.04.002
- Lee, Y.S. and Kim, Y.W. (1996), "Analysis of nonlinear vibration of hybrid composite plates", Comput. Struct., 61, 573-578. https://doi.org/10.1016/0045-7949(96)00055-7
- Lu, H.X. and Li, J.Y. (2009), "Analysis of an initially stressed laminated plate based on elasticity theory," Comput. Struct., 88, 271-279. https://doi.org/10.1016/j.compstruct.2008.04.001
- Muthurajan, K.G., Sankaranarayanasamy, K., Tiwari, S.B. and Nageswara Rao B. (2005), "Nonlinear vibration analysis of initially stressed thin laminated rectangular plates on elastic foundations", J. Sound Vib., 282, 949-996. https://doi.org/10.1016/j.jsv.2004.03.047
- Onkar, A.K. and Yadav, D. (2005), "Forced nonlinear vibration of laminated composite plates with random material properties", Comput. Struct., 70, 334-342. https://doi.org/10.1016/j.compstruct.2004.08.037
- Ossadzow, C. and Touratier, M. (2003), "Multilayered piezoelectric refined plate theory", AIAA J., 41, 90-99. https://doi.org/10.2514/2.1917
- Patel, B.P., Ganapathi, M. and Touratier, M. (1999), "Nonlinear free flexural vibrations/post-buckling analysis of laminated orthotropic beams/columns on a two parameter elastic foundation", Comput. Struct., 46, 189-196. https://doi.org/10.1016/S0263-8223(99)00054-9
- Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Comput. Struct., 56, 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
- Polit, O. and Touratier, M. (2000), "Higher-order triangular sandwich plate finite element for linear and nonlinear analyses", Comput. Meth. Appl. Mech. Eng., 185, 305-324. https://doi.org/10.1016/S0045-7825(99)00264-9
- Sinfh, A.V. (2000), "Linear and Geometrically nonlinear vibrations of fiber reinforced laminated plates and shallow shells", Comput. Struct., 76, 277-285. https://doi.org/10.1016/S0045-7949(99)00155-8
- Singha, M.K. and Daripa, R.(2007), "Nonlinear vibration of symmetrically laminated composite skew plates by finite element method", Int. J. Nonlin. Mech., 42, 1144-1152. https://doi.org/10.1016/j.ijnonlinmec.2007.08.001
- Topdar, P., Sheikh, A.H. and Dhang, N. (2007), "Vibration characteristics of composite/sandwich laminates with piezoelectric layers using a refined hybrid plate model", Int. J. Mech. Sci., 49, 1193-1203. https://doi.org/10.1016/j.ijmecsci.2007.04.001
- Xu, K., Amed, K. and Tang, Y.Y. (1997), "Three-dimensional solutions for free vibrations of initially-stressed thermoelectroelastic multilayered plates", Comput. Meth. Appl. Mech. Eng., 141, 125-39. https://doi.org/10.1016/S0045-7825(96)01065-1
- Ye, M., Sun, Y., Zhang, W., Zhan, X. and Ding, Q. (2005), "Nonlinear oscillations and chaotic dynamics of an antisymmetric cross-ply laminated composite rectangular thin plate under parametric excitation", J. Sound Vib., 287, 723-758. https://doi.org/10.1016/j.jsv.2004.11.028
Cited by
- A cell-based smoothed discrete shear gap method (CS-FEM-DSG3) using layerwise deformation theory for dynamic response of composite plates resting on viscoelastic foundation vol.272, 2014, https://doi.org/10.1016/j.cma.2014.01.009
- Dynamic behavior of a functionally graded plate resting on Winkler elastic foundation and in contact with fluid vol.50, pp.1, 2014, https://doi.org/10.12989/sem.2014.50.1.053
- Design of isolated footings of circular form using a new model vol.52, pp.4, 2014, https://doi.org/10.12989/sem.2014.52.4.767
- Hygrothermal Effects on Dynamic Instability of Hybrid Composite Plates vol.17, pp.01, 2017, https://doi.org/10.1142/S0219455417500018
- Nonlinear vibration of hybrid laminated plates resting on elastic foundations in thermal environments vol.36, pp.12, 2012, https://doi.org/10.1016/j.apm.2012.02.001
- Bending of a rectangular plate resting on a fractionalized Zener foundation vol.52, pp.6, 2014, https://doi.org/10.12989/sem.2014.52.6.1069
- Design of boundary combined footings of trapezoidal form using a new model vol.56, pp.5, 2015, https://doi.org/10.12989/sem.2015.56.5.745
- A cell-based smoothed finite element method using three-node shear-locking free Mindlin plate element (CS-FEM-MIN3) for dynamic response of laminated composite plates on viscoelastic foundation vol.42, 2014, https://doi.org/10.1016/j.enganabound.2013.11.008
- Buckling and vibration of laminated composite circular plate on winkler-type foundation vol.17, pp.1, 2014, https://doi.org/10.12989/scs.2014.17.1.001
- A comparative study for design of boundary combined footings of trapezoidal and rectangular forms using new models vol.6, pp.4, 2017, https://doi.org/10.12989/csm.2017.6.4.417